• Применение коллоидных растворов наночастиц серебра. Способ получения наночастиц серебра

    24.04.2019

    Наночастицы серебра в водных растворах получают путем восстановления ионов серебра с помощью глюкозы, аскорбиновой кислоты, гидразина, боргидрида натрия и других восстановителей. Реакцию восстановления проводят в различных условиях. Восстановление глюкозой проводят при нагревании до 60 0 С. Для увеличения скорости протекания реакции используют гидроксид натрия. Полученные частицы исследуют различными способами: методом рентгеновской дифракции (XRD), методом трансмиссионной электронной микроскопии (TEM), а также проводились исследования на спектрофотометре. Исследования показали, что в ходе восстановления в водных растворах были получены частицы размером 10 – 20нм, λ = 1.5418 A°

    К способам управления размерами наночастиц, применяемым в научной практике, относятся: использование полимерных матриц, позволяющих управлять размерами нанокластеров, полимерной защиты; физические методы управления размерами (обработка ультразвуком, облучение рентгеновским излучением и использование токов высокой чистоты). Изменение размера нанокластеров металлов добиваются также варьированием природы восстановителя [ Кузьмина Л.Н. Получение наночастиц серебра методом химического восстановления/Л.Н.Кузьмина, Н.С.Звиденцова, Л.В Колесников// Журнал Российского химического общества им. Д.И. Менделеева . – 2007. - Т. XХХ, № 8. – С.7 -12 ] . Так, использование боргидрида натрия при восстановлении позволяет в большинстве случаев получить наночастицы серебра с узким распределением по размерам в пределах 2-8 нм. Восстановление более мягким восстановителем, таким как гидразин, приводит к образованию более крупных наночастиц металлов с размерами 15-30 нм. При варьировании условий восстановления возможно получение практически монодисперсных наночастиц. Строение и размер продукта в большой степени зависит от условий реакции таких как температура и концентрация нитрата серебра. Например, когда температура понижается до 120 или увеличивается до 190, в полученном продукте доминируют наночастицы с нерегулярной структурой (формой). Начальная концентрация нитрата серебра должна быть не больше 0.1М, в противном случае будет выпадать в виде осадка металлическое серебро. Наночастицы серебра с различными размерами могут быть получены в результате увеличения времени проведения реакции.

    Также известны способы получения наночастиц серебра в неводных средах. Наночастицы серебра с фиксированным размером были синтезированы с помощью модифицированного высокомолекулярного процесса, который предполагает восстановление нитрата серебра с этиленгликолем в присутствии стабилизаторов, таких как поливинилпирролидон [ Сергеев Б.М.. Получение наночастиц серебра в водных растворах полиакриловой кислоты/ Б.М.Сергеев, М..В. Кирюхин, А.Н.Прусов, В.Г Сергеев // Вестник Московского Университета. Серия 2. Химия – 1999. – Т.40, №2. – С. 129-133.].

    1.2. 2."Зеленый синтез": получение наночастиц с использованием растений

    Растения способны восстанавливать ионы металлов как на своей поверхности, так и в различных органах и тканях, удаленных от места проникновения ионов. В связи с этим растения используются для извлечения ценных металлов. Подобный процесс в настоящее время называется фитодобычей. Накопленные металлы можно извлекать из убранных растений с использованием агломерационного и плавильного методов. Исследование процесса биоакумуляции металлов в растениях показало, что металлы, как правило, накапливаются в виде наночастиц. Например, растения Brassica juncea (листовая горчица) и Meticago sativa (люцерна посевная) накапливали наночастицы серебра размером 50 нм в количестве до 13.6% от собственного веса при выращивании на нитрате серебра в качестве субстрата . Икосаэдры золота размером 4 нм выявлялись в M. Sativa , полусферические формы частиц меди размером 2 нм – в Iris pseudocorus (ирис всевдоаировый) , выращенных на субстратах, содержащих соли соответствующих металлов .

    В целом механизм синтеза металлических наночастиц в растениях и в растительных экстрактах включает три основные фазы: 1) фазу активации, в процессе которой происходит восстановление ионов металла; 2) фазу роста, в течение которой происходит спонтанное включение мелких соединений наночастиц в наночастицы большего размера (формирование наночастиц за счет гетерогенной нуклеации и роста), что сопровождается увеличением термодинамической стабильности наночастиц, и 3) фазу терминации процесса, определяющую окончательную форму наночастиц .

    Процесс образования наночастиц схематически изображен на рисунке 1.Рис. 1. Схема синтеза металлических наночастиц в растительном экстракте. Ионы металла связываются с восстаналивающими метаболитами и стабилизирующими агентами, восстаналиваясь до атомов металлов. Полученных комплекс атома металла с метаболитом взаимодействует с другими комплексами, формируя метаболлическую наночастицу, затем происходит рост и слияние отдельных мелких наночастиц в более крупные за счет процесса переконденсации до тех пор, пока частицы не обретут нужный размер и форму, стабильные в данных условиях.

    При увеличении длительности фазы роста наночастицы агрегируют между собой, образуя нанотрубки, нанопризмы, наношестиугольники, а так же множество других наночастиц нерегулярной формы .

    В настоящее время для синтеза металлических наночастиц используют различные физические и химические процессы, позволяющие получать наночастицы с заданными свойствами. Однако, несмотря на широкое распространение, это, как правило, дорогостоящие, трудоемкие способы, сопряженные с риском и потенциальной опасностью для окружающей среды и живых организмов. Таким образом, существует очевидная потребность в альтернативных экономически эффективных и в то же время экологически чистых методах производства наночастиц .

    При получении наночастиц необходимо учитывать их неустойчивость и высокую реакционную способность, которые могут привести к агрегации наночастиц, потере необходимых свойств при взаимодействии с окружающей средой, изменить структуру наночастиц. Это может нарушить эволюционный переход к наноматериалу и в конечном итоге определить низкий уровень качества эксплуатационных характеристик [Минько с соавт., 2013].

    Наночастицы серебра - хорошие антисептики . Благодаря высокой электропроводности они активно используются в производстве товаров широкого потребления - пищевых добавок, одежды, бытовой техники, игрушек. В связи с этим важно выяснить, не вредят ли они здоровью людей и животных. Исследователи из Института общей генетики им. Н. И. Вавилова под руководством Александра Рубановича при содействии коллег из НИИ общей патологии и патофизиологии РАМН и Научно - производственной компании «Наномет» выяснили, что инъекции наночастиц серебра убивают млекопитающих, но ионы серебра безвредны. На рисунке 1 показана картинка наночастицы серебра .

    Рисунок 1 - Наночастицы серебра

    Наночастицы серебра авторы работы получили методом биохимического синтеза путем восстановления ионов металла биологически активным веществом из группы флавоноидов. Начальная концентрация наночастиц в водном растворе составляла 0.54 г/л. Действие раствора сравнивалось с действием ионов Ag+ в эквивалентных концентрациях, для чего использовался раствор азотнокислого серебра (начальная концентрация 0.85 г/л).

    Молодые экспериментальные мыши, которым делались инъекции растворов серебра в разных формах и концентрациях, были разделены на несколько групп. Животные 30 суток содержались в виварии, где ученые наблюдали за их состоянием и ежедневно вели учет павших. В первые часы после инъекции у грызунов, которым вкалывались наночастицы, снижалась двигательная активность, возникали судороги и паралич задних лапок. Смерть наступала через 12 - 24 часов после введения препарата. Специалисты предположили, что животных губило воздействие нанопрепарата на нервную ткань. Грызуны, которым были введены ионы серебра, остались живы в полном составе, равно как и контрольная группа, которым вкалывали дистиллированную воду. Токсическое действие наночастиц на генетический материал ученые оценивали по количеству патологически измененных спермиев у самцов мышей и степени повреждения ДНК лимфоцитов и других клеток селезенки.

    Свойства наночастиц серебра

    Свойства коллоидного раствора , в том числе и наночастиц серебра, определяются возможностью коагуляции и перекристаллизации, т. е. агрегативной устойчивостью, а также седиментационной устойчивостью и возможностью их окисления кислородом воздуха. Анализ литературных данных показал, что для описания устойчивости нанодисперсии серебра во времени могут быть использованы несколько методов. Метод визуального наблюдения за системой может дать предварительные и общие закономерности относительной устойчивости исследуемой дисперсии. Может быть зафиксировано изменения окраски системы и образования осадка в ней. Для наночастиц серебра цвет систем от красного (желто - коричневого) меняется до серого и даже черного. Визуальный метод наблюдения может сыграть определяющую роль при исследовании седиментационной устойчивости.

    Малые размеры наночастиц приводят к многократному увеличению удельной поверхность материалов , что способствует транзиту самых различных веществ за счет увеличения адсорбционной емкости. Возрастает химическая реакционная способность и каталитические свойства вещества. На эти параметры прямо влияют также физико - химические свойства , включая форму, поверхностную структуру, полярность. Поэтому увеличивается вероятность развития различных процессов внутри отдельных клеточных структур: органелл, биологических мембран, проникновение и контакт с клеточным ядром и ДНК. Во многом цитотоксические свойства наночастиц объясняются их способностью к агрегации внутри клеток .

    Было найдено , что при радиационно-химическом восстановлении ионов Ag+ в присутствии наночастиц гетерополисоединений в оптическом спектре возникают полоса золя металла с максимумом при 392 нм и полоса при 650 нм, обусловленная продуктом восстановления («синь»).

    Напуск воздуха приводит к окислению «сини», интенсивность полосы наночастиц серебра при этом существенно уменьшается и смещается в длинноволновую область (= 410 нм). Повторное г - облучение раствора восстанавливает предшествующий спектр поглощения. Указанную процедуру «окисления - восстановления» можно провести несколько раз, при этом достигаются те же оптические эффекты. Таким образом, восстановление гетерополисоединения, составляющего стабилизирующий слой наночастиц серебра, обеспечивает повышение электронной плотности на металлическом ядре, что вызывает увеличение интенсивности полосы поглощения и ее «синее» смещение. Соответственно, окисление приводит к обратному эффекту.

    Анализируя спектры поглощения, можно предположить, что появление дополнительной полосы поглощения в длинноволновой части спектра говорит о возможной коагуляции и перекристаллизации, происходящих в системе. Aгрегативную устойчивость можно охарактеризовать при помощи метода электронной микроскопии. Он позволяет получить распределение частиц по размерам и формам, а также дает представление о расположение наночастиц в пространстве (несвязанные, коагулированные).

    Согласно теории Ми. Друде (Mie. Drude) положение максимума полосы поглощения поверхностных плазмонов в металле определяется по уравнению:

    л 2 макс = (2рc ) 2 m (е 0 + 2n )/4рN е e 2 (1)

    где c - скорость света;

    m - эффективная масса электрона;

    e - заряд электрона;

    е 0 - диэлектрическая проницаемость металла;

    n - показатель преломления среды;

    Ne - плотность свободных электронов в металле.

    Рассеяние света мелкими частицами обусловливает широкий класс явлений, которые можно описать на основе теории дифракции света на диэлектрических частицах. Многие характерные особенности рассеяния света частицами удаётся проследить в рамках строгой теории, разработанной для сферических частиц английским учёным А. Лявом (1889) и немецким учёным Г. Ми (1908, теория Ми). Когда радиус шара r много меньше длины волны света ln в его веществе, рассеяние света на нём аналогично нерезонансному рассеянию атомом. Сечение (интенсивность) рассеяния в этом случае сильно зависит от r и от разности диэлектрических проницаемостей e и вещества шара и окружающей среды: s ~ ln --4r6(e -) . С увеличением r до r ~ ln и более (при условии e > 1) в индикатрисе рассеяния появляются резкие максимумы и минимумы -- вблизи так называемых резонансов Ми (2r = mln, m = 1,2, 3) сечения сильно возрастают и становятся равными 6pr 2 рассеяние вперёд усиливается, назад -- ослабевает; зависимость поляризации света от угла рассеяния значительно усложняется.

    Рассеяние света большими частицами (r > ln) рассматривают на основе законов геометрической оптики с учётом интерференции лучей, отражённых и преломленных на поверхностях частиц. Важная особенность этого случая -- периодический (по углу) характер индикатрисы рассеяния и периодическая зависимость сечения от параметра r/ln. Рассеяние на крупных частицах обусловливает ореолы, радуги, гало и др. явления, происходящие в аэрозолях, туманах и пр.

    Рассеяние средами, состоящими из большого числа частиц, существенно отличается от рассеяния отдельными частицами. Это связано, во - первых, с интерференцией волн, рассеянных отдельными частицами, между собой и с падающей волной. Во - вторых, во многих случаях важны эффекты многократного рассеяния (переизлучения), когда свет, рассеянный одной частицей, вновь рассеивается другими. В - третьих, взаимодействие частиц друг с другом не позволяет считать их движения независимыми.

    Как уже отмечалось, свойства у наночастицы серебра на самом деле уникальные.

    Во-первых, это феноменальная бактерицидная и антивирусная активность. Об антимикробных свойствах , присущих ионам серебра, человечеству известно уже очень давно. Наверняка большинство читателей слышали о целительных способностях церковной святой «воды», получаемой путем прогонки обычной воды сквозь серебряный фильтр. Такая вода не содержит многих болезнетворных бактерий, которые могут присутствовать в обычной воде. Поэтому она может храниться годами, не портясь и не «зацветая».

    Кроме того, такая вода содержит некоторую концентрацию ионов серебра, способных нейтрализовать вредные бактерии и микроорганизмы , чем и объясняется ее благотворное влияние на здоровье человека. На рисунке 2 представлены вирусы атакующие клетку. Скорость, с которой вирус атакует клетку, превышает скорость пули.

    Рисунок 2 - Вирусы атакующие клетку

    Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы .Как показал эксперимент, ничтожные концентрации наночастиц уничтожали все известные микроорганизмы (в том числе и вирус СПИДа), не расходуясь при этом.

    Кроме того, в отличие от антибиотиков, убивающих не только вредоносные вирусы, но и пораженные ими клетки, действие наночастиц очень избирательно: они действуют только на вирусы, клетка при этом не повреждается. Дело в том, что оболочка микроорганизмов состоит из особых белков, которые при поражении наночастицами перестают снабжать бактерию кислородом. Несчастный микроорганизм больше не может окислять свое «топливо» глюкозу и гибнет, оставшись без источника энергии. Вирусы, вообще не имеющие никакой оболочки, тоже получают свое при встрече с наночастицей. А вот клетки человека и животных имеют более «высокотехнологичные» стенки, и наночастицы им не страшны.

    В настоящий момент проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах. Но уже сейчас они находят огромное количество применений.

    Например, фирма «Гелиос» выпускает зубную пасту «Знахарь» с наночастицами серебра, эффективно защищающую от различных инфекций. Также небольшие концентрации наночастиц добавляют в некоторые кремы из серии «элитной» косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При использовании наблюдается также противовоспалительный и заживляющий эффект.

    Ткани, модифицированные серебряными наночастицами, являются, по сути, самодезинфицирующимися. На них не может «ужиться» ни одна болезнетворная бактерия или вирус. Наночастицы не вымываются из ткани при стирке, а эффективный срок их действия составляет более шести месяцев, что говорит о практически неограниченных возможностях применения такой ткани в медицине и быту. Материал, содержащий наночастицы серебра, незаменим для медицинских халатов, постельного белья, детской одежды, антигрибковой обуви и т.д., и т.п.

    Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.

    Люди всегда искали способы борьбы с инфекциями, передаваемыми воздушно - капельным путем -гриппом, туберкулезом, менингитами, вирусным гепатитом и т. п. Но, увы, воздух в наших квартирах, офисах и особенно в местах массового скопления людей (больницы, общественные учреждения, школы, детские сады, казармы, тюрьмы и т. п.) перенасыщен патогенными микроорганизмами, выдыхаемыми зараженными людьми .

    Традиционные способы профилактики не всегда справляются с этой проблемой, поэтому нанохимики предложили для ее решения очень элегантный способ: добавить в лакокрасочные материалы, покрывающие стены заведений, наночастицы серебра. Как оказалось, на покрашенных такими красками стенах и потолках не может «жить» большинство патогенных микроорганизмов.

    Наночастицы, добавленные в угольные фильтры для воды, практически не вымываются с ней, как это происходит в случае обычных серебряных ионов. Это говорит о том, что срок действия таких фильтров будет несоизмеримо больше, а качество очистки воды возрастет на порядок.

    Короче говоря, крошечные, незаметные, экологически чистые серебряные наночастицы могут применяться везде, где необходимо обеспечить чистоту и гигиену: от косметических средств до обеззараживания хирургических инструментов или помещений. При этом, как уверяют ведущие российские ученые в данной области, стоимость средств и материалов, созданных на их основе, будет не намного дороже традиционных аналогов, и с развитием нанотехнологий они станут доступны каждому. Фирма Samsung уже добавляет наночастицы серебра в сотовые телефоны, стиральные машины, кондиционеры и т.д.

    Изобретение может быть использовано в области химии, медицины и нанотехнологии. Способ получения наночастиц серебра включает приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л. Полученные растворы смешивают при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00 и выдерживают при температуре 15÷55°C в течение 0,34÷48 часов в защищенном от света месте с получением раствора супрамолекулярного полимера. Полученный раствор супрамолекулярного полимера разбавляют водой в объемном соотношении 1:1. Готовят водный раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавляют в раствор супрамолекулярного полимера при постоянном перемешивании. Изобретение позволяет получить наночастицы серебра со средним гидродинамическим радиусом 20 нм. 4 ил., 1 пр.

    Рисунки к патенту РФ 2526390

    Изобретение относится к области получения наноразмерных структур из серебра, полученных в результате химического восстановления борогидридом натрия ионов серебра, включенных в супрамолекулярный полимер. Способ позволяет получать стабильные наночастицы серебра со специфическими свойствами, используя только биосовместимые реагенты. Наночастицы серебра могут быть применены в разработке антибактериальных материалов и нанотехнологиях.

    Способ получения наночастиц серебра (НЧС) на основе супрамолекулярного полимера открывает широкие возможности управления их свойствами. Супрамолекулярные полимеры - это полимероподобные макромолекулярные структуры, полученные в результате ассоциации ионов, удерживаемых вместе межмолекулярными силами.

    Технический результат настоящего изобретения заключается в получении наночастиц серебра со средним гидродинамическим радиусом 20 нм.

    Технический результат достигается в два этапа.

    Первый этап - смешение водного раствора нитрата серебра с концентрацией его в исходной смеси от 0,001М до 0,02М с водным раствором L-цистеина, таким образом, чтобы мольное соотношение серебра и L-цистеина находилось в диапазоне 1,25÷2,00. При этом образуется мутный раствор, который оставляют созревать в защищенном от света месте при температуре от 15 до 55°C до визуальной прозрачности. Созревание происходит в течение от 20 минут до двух суток (от 0,35 часа до 48,00 часов), в зависимости от концентрации исходных компонентов, их мольного соотношения и температуры. В результате получают прозрачный вязкий раствор супрамолекулярного геля светло-желтого цвета. Методика его синтеза соответствует патенту РФ № 2423384 от 10.07.2011.

    В ультрафиолетовом спектре полученного раствора наблюдается появление двух слабых полос поглощения: в области 305 нм и 389 нм (Фиг.1).

    Относительная вязкость полученного раствора находится в пределах от 1,1 до 2,5, в зависимости от концентрации исходных компонентов, их мольного соотношения и времени созревания раствора. Установлено, что для достижения результата необходим только L-цистеин высокой степени чистоты (не менее 99%).

    Второй этап предполагает смешение водного раствора супрамолекулярного полимера на основе нитрата серебра и L-цистеина с водным раствором борогидрида натрия при постоянном перемешивании. Мольное соотношение серебра и борогидрида натрия должно составлять 0,4. При этом образуется красно-коричневый раствор с низкой вязкостью.

    В ультрафиолетовом спектре полученного раствора имеются полосы поглощения в диапазоне от 390 до 500 нм, соответствующие явлению плазмонного резонанса на металлических наночастицах серебра или их агрегатах (Фиг.2).

    Исследованием уровня техники установлено, что способов получения наночастиц серебра химическим восстановлением борогидридом натрия из водного раствора супрамолекулярного полимера на основе нитрата серебра и L-цистеина не обнаруживается.

    Сущность изобретения заключается в следующем.

    Водный раствор супрамолекулярного полимера (L-цистеин серебряный раствор) на основе L-цистеина и нитрата серебра представляет собой раствор полимероподобного супрамолекулярного соединения, построенного из молекул меркаптида серебра и ионов серебра, с формированием линейных цепочек со связями серебро-сера: -Ag-S-Ag-S-Ag-S-.

    Авторами впервые было установлено, что указанный раствор может использоваться как исходный реагент для синтеза седиментационно и частично агрегативно устойчивых наночастиц серебра со специфическими свойствами. Ионы серебра, включенные в супрамолекулярный полимер, восстанавливаются борогидридом натрия до металлического серебра. Размер синтезируемых наночастиц серебра детерминируется размером супрамолекул, их концентрацией, температурой проведения процесса и другими факторами. Молекулы цистеина, входившие в состав супрамолекулярного полимера, связываются с поверхностью получаемых наночастиц по тиольной группе. Тем самым наночастицам придается седиментационная и частично-агрегативная устойчивость. Срок хранения растворов наночастиц, полученных данным способом, без значительного изменения их свойств, - около 6 месяцев.

    Образование фракций наночастиц размером от 10 до 50 нм в растворе установлено методом динамического светорассеяния. Измерение интенсивности ДСР выполнено на анализаторе Zetasizer ZS (Malvern Instruments Ltd., Великобритания) с He-Ne - лазером ( =633 нм) мощностью 4 мВт. Все измерения осуществлялись при 25°C. На Фиг.3 представлены данные динамического светорассеяния, которые свидетельствуют о наличии в данном растворе наночастиц со средним гидродинамическим радиусом порядка 20 нм. Фракция наночастиц с большим размером представлена обратимыми агрегатами из первой фракции.

    Методом просвечивающей электронной микроскопии установлено присутствие в растворе наночастиц размером от 10 до 50 нм, рефлексы которых на электронограмме образца соответствуют присутствию металлического серебра.

    На Фиг.4 представлены электронно-микроскопический снимок и электронограмма высушенного на подложке из формвара образца раствора наночастиц серебра, полученные на просвечивающем электронном микроскопе «LEO 912 АВ OMEGA» (Carl Zeiss, Германия).

    В предложенном способе получения наночастиц используется биологически активное супрамолекулярное соединение на основе биосовместимой аминокислоты L-цистеина и нитрата серебра. Наночастицы серебра являются стабильным биологически активным продуктом, совместимым с полимерами медицинского назначения.

    Антибактериальное действие катионов серебра объясняется тремя механизмами: вмешательством в перенос электронов, связыванием ДНК и взаимодействием с мембраной клетки. Наночастицы металлического серебра обладают антибактериальным действием благодаря их медленному окислению и высвобождению в окружающую среду катионов серебра. Этот фактор играет решающую роль в ряде случаев медицинского применения. Ионное серебро в высоких концентрациях обладает токсическим воздействием не только на прокариотические клетки бактерий, но и на эукариотические клетки организма пациента. Это вызывает определенные трудности с разовой дозировкой препарата. При использовании наночастиц серебра достижение минимально ингибирующих концентраций происходит постепенно (по мере окисления развитой поверхности наночастиц), и токсического действия на организм не наблюдается. Кроме того, существуют данные о большей чувствительности патогенных и условно патогенных грибков (например, Candida) именно к наночастицам серебра, которые разрушают клеточные мембраны и угнетают рост грибковых клеток. Таким образом, наночастицы серебра могут использоваться в тех случаях, когда нельзя по каким-то причинам повышать содержание ионов серебра. В предлагаемом нами способе получения наночастиц серебра существует возможность получения наночастиц с заранее заданным размером.

    Изобретение поясняется графическими материалами (Фиг.1÷4).

    Фиг.1. УФ спектры L-цистеин-серебряного раствора при разном его разбавлении: 1 - без разбавления, 2 - разбавление в 2 раза, 3 - разбавление в 8 раз (концентрации компонентов в неразбавленном растворе: C AgNO3 =0,0038М, C cys =0,0030М; толщина слоя 1 см).

    Фиг.2. УФ спектры растворов наночастиц серебра, полученных при разном разбавлении исходного ЦСР: 1 - без разбавления, 2 - разбавление в 2 раза, 3 - разбавление в 8 раз (концентрации компонентов в неразбавленном растворе: C AgNO3 = 0,0038М, C cys =0,0030М; толщина слоя 1 мм).

    Фиг.3. Распределение НЧС по размерам в образце, полученном при разбавлении исходного раствора супрамолекулярного полимера в 8 раз (концентрации компонентов в неразбавленном растворе: C AgNO3 =0,0038М, C cys =0,0030М).

    Фиг.4. ПЭМ-изображение (а) и электронограмма (б) образца наночастиц полученного при разбавлении исходного раствора супрамолекулярного полимера в 2 раза (концентрации компонентов в неразбавленном растворе: C AgNO3 =0,0038M, C cys =0, 0030М).

    Пример получения наночастиц серебра:

    1. Растворяют 127,5 мг нитрата серебра в 25 мл дистиллированной воды.

    2. Растворяют 90,8 мг L-цистеина в 25 мл дистиллированной воды.

    3. К 25 мл раствора нитрата серебра приливают 155 мл дистиллированной воды и 20 мл раствора L-цистеина, смесь энергично перемешивают. Смесь оставляют созревать в защищенном от света месте на 10 часов при комнатной температуре.

    4. К 50 мл полученного раствора приливают 50 мл дистиллированной воды и смесь энергично перемешивают. Получают разбавленный раствор супрамолекулярного полимера.

    5. Растворяют 37,0 мг борогидрида натрия в 10 мл дистиллированной воды

    6. К 100 мл разбавленного раствора супрамолекулярного полимера при перемешивании приливают по каплям (со скоростью 1 капля в секунду) 10 мл раствора борогидрида натрия. Перемешивание продолжают до прекращения заметного выделения пузырьков газа.

    Таким образом заявляется способ получения наночастиц серебра, включающий приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125-10,04 М/л, смешивание полученных растворов при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00, выстаивание смеси при температуре 15÷55°C в течение 0,34÷48,00 часов в защищенном от света месте с получением раствора супрамолекулярного полимера, разбавление смеси водой в объемном соотношении 1:1, приготовление водного раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавление водного раствора борогидрида натрия в раствор сумолекулярного полимера при постоянном перемешивании.

    Использование предлагаемого способа получения наночастиц серебра в областях, отличных от медицины, дает возможность стабилизировать коллоидные растворы металлического серебра с определенным, заранее заданным размером дисперсной фазы. Хотя непосредственный способ применения наночастиц серебра в таких областях не является объектом данного патентования, стоит отметить, что это могут быть такие приложения, как электронные и оптоэлектронные приборы и устройства, композитные материалы различного назначения, электропроводящие клеи, пленки.

    Использование наночастиц серебра в качестве гетерогенных катализаторов применяется во многих процессах органического синтеза (например, в производстве формальдегида). При этом размер частиц определяет эффективность катализа: чем больше поверхность катализатора, тем активнее протекает каталитический процесс. Использование заявляемого способа получения наночастиц серебра позволит получать катализаторы двумя способами: получение наночастиц in situ (непосредственно в матрице носителя) и пропитка носителя коллоидным раствором наночастиц.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    Способ получения наночастиц серебра, содержащий приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л, смешивание полученных растворов при мольном соотношении нитрата серебра и L-цистеина в диапазоне 1,25÷2,00, выстаивание смеси при температуре 15÷55°C в течение 0,34÷48,00 часов в защищенном от света месте с получением раствора супрамолекулярного полимера, разбавление смеси водой в объемном соотношении 1:1, приготовление водного раствора борогидрида натрия концентрации 0,003÷0,010 М/л и добавление водного раствора борогидрида натрия в раствор сумолекулярного полимера при постоянном перемешивании.



    Похожие статьи