• Закон сохранения энергии механического движения. Закон сохранения механической энергии

    07.05.2019

    Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

    Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

    Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

    Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

    Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

    Мы уже изучали закон сохранения импульса (ЗСИ):

    Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

    Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

    Рис. 1. Свободное падение тела с некоторой высоты

    Дополнительная задача 1. «О падении тела с некоторой высоты»

    Задача 1

    Условие

    Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

    Решение 1:

    Начальная скорость тела . Нужно найти .

    Рассмотрим закон сохранения энергии.

    Рис. 2. Движение тела (задача 1)

    В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

    Согласно закону сохранения энергии можем записать:

    Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

    Окончательный ответ будет: . Если подставить все значение, то получим:.

    Ответ: .

    Пример оформления решения задачи:

    Рис. 3. Пример оформления решения задачи № 1

    Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

    Решение 2 :

    Запишем уравнение движения тела в проекции на ось :

    Когда тело приблизится к поверхности Земли, его координата будет равна 0:

    Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

    Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

    Полагая ускорение свободного падения равным получаем:

    Знак минус означает, что тело движется против направления выбранной оси.

    Ответ: .

    Пример оформления решения задачи № 1 вторым способом.

    Рис. 4. Пример оформления решения задачи № 1 (способ 2)

    Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

    Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

    Дополнительная задача 2

    Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

    Рис. 5. Иллюстрация к задаче № 2

    Решение:

    Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

    Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

    Потенциальная энергия на этой высоте будет обозначена следующим образом: .

    По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

    Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

    Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

    Ответ:

    Пример оформления задачи 2.

    Рис. 6. Оформление решения задачи № 2

    Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

    Рис. 7. Закон сохранения энергии

    Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

    Рис. 8. Движение автомобиля

    В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

    Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

    Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

    В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

    Дополнительная задача 3

    Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

    Решение:

    Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.

    Во всех явлениях, происходящих в природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, при этом ее значение сохраняется.

    Закон сохранения энергии - фундаментальный закон природы, заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

    Закон сохранения механической энергии

    В механике закон сохранения энергии утверждает, что в замкнутой системе частиц, полная энергия, которая является суммой кинетической и потенциальной энергии и не зависит от времени, то есть является интегралом движения. Закон сохранения энергии справедлив только для замкнутых систем, то есть при отсутствии внешних полей или взаимодействий.

    Силы взаимодействия между телами, для которых выполняется закон сохранения механической энергии называются консервативными силами. Закон сохранения механической энергии не выполняется для сил трения, поскольку при наличии сил трения происходит преобразование механической энергии в тепловую.

    Математическая формулировка

    Эволюция механической системы материальных точек с массами \(m_i\) по второму закону Ньютона удовлетворяет системе уравнений

    \[ m_i\dot{\mathbf{v}_i} = \mathbf{F}_i \]

    где
    \(\mathbf{v}_i \) — скорости материальных точек, а \(\mathbf{F}_i \) — силы, действующие на эти точки.

    Если подать силы, как сумму потенциальных сил \(\mathbf{F}_i^p \) и непотенциальных сил \(\mathbf{F}_i^d \) , а потенциальные силы записать в виде

    \[ \mathbf{F}_i^p = - \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

    то, домножив все уравнения на \(\mathbf{v}_i \) можно получить

    \[ \frac{d}{dt} \sum_i \frac{mv_i^2}{2} = - \sum_i \frac{d\mathbf{r}_i}{dt}\cdot \nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) + \sum_i \frac{d\mathbf{r}_i}{dt} \cdot \mathbf{F}_i^d \]

    Первая сумма в правой части уравнения является ни чем иным, как производной по времени от сложной функции, а следовательно, если ввести обозначения

    \[ E = \sum_i \frac{mv_i^2}{2} + U(\mathbf{r}_1, \mathbf{r}_2, \ldots \mathbf{r}_N) \]

    и назвать эту величину механической энергией , то, интегрируя уравнения с момента времени t=0 до момента времени t, можно получить

    \[ E(t) - E(0) = \int_L \mathbf{F}_i^d \cdot d\mathbf{r}_i \]

    где интегрирование проводится вдоль траекторий движения материальных точек.

    Таким образом, изменение механической энергии системы материальных точек со временем равно работе непотенциальных сил.

    Закон сохранения энергии в механике выполняется только для систем, в которых все силы потенциальные.

    Закон сохранения энергии для электромагнитного поля

    В электродинамике закон сохранения энергии исторически формулируется в виде теоремы Пойтинга.

    Изменение электромагнитной энергии, заключенной в неком объеме, за некий интервал времени равно потоку электромагнитной энергии через поверхность, ограничивающую данный объем, и количеству тепловой энергии, выделившейся в данном объеме, взятой с обратным знаком.

    $ \frac{d}{dt}\int_{V}\omega_{em}dV=-\oint_{\partial V}\vec{S}d\vec{\sigma}-\int_V \vec{j}\cdot \vec{E}dV $

    Электромагнитное поле обладает энергией, которая распределяется в пространстве, занятом полем. При изменении характеристик поля меняется и распределение энергии. Она перетекает из одной области пространства в другую, переходя, возможно, в другие формы. Закон сохранения энергии для электромагнитного поля является следствием полевых уравнений.

    Внутри некоторой замкнутой поверхности S, ограничивающей объем пространства V , занятого полем, содержится энергия W — энергия электромагнитного поля:

    W = Σ(εε 0 E i 2 / 2 + μμ 0 H i 2 / 2) ΔV i .

    Если в этом объеме имеются токи, то электрическое поле производит над движущимися зарядами работу, за единицу времени равную

    N = Σ i j̅ i ×E̅ i . ΔV i .

    Это величина энергии поля, которая переходит в другие формы. Из уравнений Максвелла следует, что

    ΔW + NΔt = -Δt S S̅ × n̅ . dA,

    где ΔW — изменение энергии электромагнитного поля в рассматриваемом объеме за время Δt, а вектор = × называется вектором Пойнтинга .

    Это закон сохранения энергии в электродинамике .

    Через малую площадку величиной ΔA с единичным вектором нормали за единицу времени в направлении вектора протекает энергия × n̅ . ΔA, где — значение вектора Пойнтинга в пределах площадки. Сумма этих величин по всем элементам замкнутой поверхности (обозначена знаком интеграла), стоящая в правой части равенства , представляет собой энергию, вытекающую из объема, ограниченного поверхностью, за единицу времени (если эта величина отрицательна, то энергия втекает в объем). Вектор Пойнтинга определяет поток энергии электромагнитного поля через площадку, он отличен от нуля всюду, где векторное произведение векторов напряженности электрического и магнитного полей отлично от нуля.

    Можно выделить три главных направления практического применения электричества: передача и преобразование информации (радио, телевидение, компьютеры), передача импульса и момента импульса (электродвигатели), преобразование и передача энергии (электрогенераторы и линии электропередачи). И импульс, и энергия переносятся полем через пустое пространство, наличие среды приводит лишь к потерям. Энергия не передается по проводам! Провода с током нужны для формирования электрического и магнитного полей такой конфигурации, чтобы поток энергии, определяемый векторами Пойнтинга во всех точках пространства, был направлен от источника энергии к потребителю. Энергия может передаваться и без проводов, тогда ее переносят электромагнитные волны. (Внутренняя энергия Солнца убывает, уносится электромагнитными волнами, в основном светом. Благодаря части этой энергии поддерживается жизнь на Земле.)

    В вашем браузере отключен Javascript.
    Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

    Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

    Это утверждение выражает закон сохранения энергии в механических процессах . Он является следствием законов Ньютона. Сумму E = E k + E p называют полной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

    Билет 11

    Выражение кинетического момента тела с одной неподвижной точкой через матрицу моментов инерции тела.

    Имеет твердое тело, одна из точек которого закреплена. Движение тела рассматривается относительно некоторой системы координат О xyz .

    Кинетически момент относительно неподвижной точки:

    Где r k - радиус-вектор какой-либо точки тела. m k -масса точки. V k - скорость этой точки относительно выбранной системы отсчета.

    формула эйлера

    В проекциях на оси:

    Для проекции кинетического момента на ось O x с учетом(2’) имеем:

    Суммы в (1’) представляют собой соответственно осевой и центробежные моменты инерции. Получаем:

    По (3)вычисляются проекции на оси координат кинетического момента тела относительно его закрепленной точки. Кинетический момент по проекциям определяется по формуле:

    Для неподвижных осей осевые и центробежные моменты инерции изменяются при вращении тела и, следовательно, зависят от времени вследствие изменения положения тела относительно этих осей.

    Если применить тензор инерции:

    И учесть правило умножения тензора на вектор столбец омега, то можно кратко выразить формулой: .

    Упрощаем формулу (3)для проекций:

    В этом случае проекции кинетического момента вычисляются так же, как и в случае, если бы каждая из главных осей инерции была неподвижной осью вращения тела. Главные оси инерции для неподвижной точки О обычно подвижные оси, скрепленные с самим вращающимся телом. Только такие оси могут быть главными в течении всего времени вращения тела. Другие подвижные или неподвижные оси могут быть главными только в отдельные моменты времени.

    Кинетическая энергия поступательного движения

    Кинетической энергией системы называется скалярная величина Т, равная арифметиче­ской сумме кинетических энергий всех точек системы

    Кинетическая энергия является характеристикой и поступатель­ного и вращательного движения системы, поэтому теоремой об изме­нении кинетической энергии особенно часто пользуются при решении задач.

    Если система состоит из нескольких тел, то ее кинетическая энергия равна, очевидно, сумме кинетических энергий этих тел:

    Кинетическая энергия – скалярная и всегда положительная величина.

    Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

    1. Поступательное движение . В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости дви­жения центра масс. То есть, для любой точки

    Таким образом, кинетическая энергия тела при поступатель­ном движении равна половине произведения массы тела на квад­рат скорости центра масс. От направления движения значение Т не зависит.

    Билет 12

    Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси

    Дифференциальное уравнение имеет вид:

    , (2.6)

    где – угловое ускорение тела.

    Уравнение (2.6) получается из уравнения (2.4) теоремы путём подстановки в него формулы (2.3).

    (2.3)

    (2.4)

    Интегрируя уравнение (2.6), можно определить закон вращения тела. Методика решения подобных задач:

    – изображаем тело в произвольном положении; показываем внешние силы, действующие на тело; показываем ось , направленную по оси вращения тела в ту сторону, откуда вращение видно происходящим против часовой стрелки;

    – находим сумму моментов внешних сил относительно оси ;

    – вычисляем, если не задан, момент инерции тела ;

    – составляем уравнение (2.6), интегрируя это уравнение, определяем закон вращения тела.

    ПОТЕНЦИАЛЬНЫЕ СИЛЫ

    Поле сил, остающееся постоянным во времени, называется стационарным. В стационарном силовом поле сила, действующая на частицу, зависит только от ее положения. Работа, которую совершают силы поля при перемещении частицы из точки 1 в точку 2, зависит, вообще говоря, от траектории, по которой перемещается частица из начального положения в конечное. Вместе с тем, имеются стационарные силовые поля, в которых работа, совершаемая над частицами силами поля, не зависит от формы траектории между точками 1 и 2. Силы, обладающие таким свойством, называются потенциальными или консервативными, а соответствующее поле сил – потенциальным полем. Примером потенциальных сил являются упругие силы, сила тяжести.

    билет 13 1.Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П. Рассмотрим сечение тела какой-нибудь плоскостью OXY, параллельной неподвижной плоскости П (рис.1).При плоскопараллельном движении все точки тела, лежащие на прямой , перпендикулярной к сечению, т.е. к плоскости П, движутся тождественно. Поэтому для изучения движения всего тела достаточно изучить, как движется сечение тела в плоскости OXY. В дальнейшем будем плоскость OXY совмещать с плоскостью рисунка, а вместо всего тела изображать только его сечение. Положение сечения в плоскости OXY определяется положением какого-нибудь проведенного в этом сечении отрезка АВ (рис.2). Положение отрезка АВ можно определить, зная координаты точки А и угол , который от-резок АВ образует с осью x. Точку А, выбранную для определения положения сечения, называют полюсом. При движении тела величины и будут меняться: (1.74) Уравнения определяющие закон происходящего движения, называются уравнениями плоскопараллельного движения твердого тела. 2.Главный момент всех внутренних сил системы(относительно всякого выбранного центра) в любой момент времени равен нулю (M O i =0).M-вектор. или . Уравновешенными внутренние силы будут тогда, когда рассматриваемая система представляет собою абсолютно твердое тело. Действительно, если взять произвольный центр О , то из рис. видно, что . билет 14 1.Кинетической энергией системы называют сумму кинетических энергий всех материальных точек, входящих в систему; при поступательном движении: E=mV 2 /2; при вращении вокруг неподвижной оси : E=I Z v 2 /2; при плоскопараллельном движении : E=mV C 2 /2-I Z v 2 /2, где V C -скорость центра масс,v-угловая скорость. Кинетическая энергия механической системы есть энергия движения центра масс плюс энергия движения относительно центра масс: E=E 0 +E R , где E-полная кинетическая энергия системы, E 0- кинетическая энергия движения центра масс, E R -относительная кинетическая энергия системы. Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы в её сферическом движении относительно центра масс. 2.Степени свободы - это совокупность независимых координат перемещения и/или вращения, полностью определяющая положение системы или тела (а вместе с их производными по времени - соответствующими скоростями - полностью определяющая состояние механической системы или тела - то есть их положение и движение). Обобщенными координатами (о.к.) системы называют такие величины, которые обобщают несколько независимых декартовых координат в углы, линейные расстояния, площади. Удобство состоит в том, что о.к. можно выбирать с учетом наложенных связей, т.е. сообразуясь с характером движения, допускаемого для системы всей совокупностью наложенных связей.

    Билет

    1) Для внутренних сил механической системы имеет место свойство: главный вектор и главный момент внутренних сил механической системы равны нулю.

    .

    Это следует из того, что внутренние силы есть силы взаимодействия между точками системы, которые попарно равны и направлены в противоположные стороны.

    2) Если все силы системы потенциальны, то обобщенные силы системы выражаются через потенциальную энергию системы как Q j = -дП / дq j , а уравнения Лагранжа второго рода запишутся в виде

    Так как потенциальная энергия не зависит от обобщенных скоростей, то. Введем в рассмотрение функцию

    Билет 16.

    1. Tеорема об изменении кинетической энергии механической системы в дифференциальной форме

    Изменение кинетической энергии механической системы на некотором ее перемещении равно сумме работ внешних и внутренних сил, приложенных к точкам системы, на том же перемещении.

    2. Удерживающие и стационарные связи

    Если функция зависит явно от времени, то говорят, что связь - нестационарная или реономная ; если же эта функция не зависит явно от времени, то говорят, что эта связь -стационарная или склерономная .

    Если связь задаётся равенством, то говорят, что такая связь - удерживающая или двусторонняя :

    Билет 17

    1 Tеорема об изменении кинетической энергии механической системы

    Кинетической энергией системы называют сумму кинетических энергий всех тел, входящих в систему. Для определённой таким образом величины справедливо утверждение:

    Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.

    2 Голономные связи

    Голоно́мная связь - механическая связь, налагающая ограничения только на положения (или перемещения) точек и тел системы.

    Математически выражается в виде равенства:

    Билет 18

    1.Принцип Эйлера-Даламбера для материальной точки

    Согласно данному принципу, для каждой i-той точки системы верно равенство , где - действующая на эту точку активная сила, - реакция наложенной на точку связи, - сила инерции, численно равная произведению массы точки на её ускорение и направленная противоположно этому ускорению ()

    2 кинетическая энергия тела при плоском движении

    Билет 19

    Уравнения кинетостатики.

    Кинетостатика - раздел механики, в котором рассматриваются способы решения динамических задач с помощью аналитических или графических методов статики. В основе К. лежит Д"Аламбера принцип, согласно которому уравнения движения тел можно составлять в форме уравнений статики, если к фактически действующим на тело силам и реакциям связей присоединить силы инерции. Методы К. находят применение при решении ряда динамических задач, особенно в динамике машин и механизмов.

    уравнения кинетостатики для материальной точки :

    где F, R, Ф - главные векторы активных сил, реакций связей и сил инерции;

    Fz, Rz, Ф z - главные моменты активных сил, реакций связей и сил инерции относительно точки О 1

    Закон сохранения и превращение энергии является одним из важнейших постулатов физики. Рассмотрим историю его появления, а также основные области применения.

    Страницы истории

    Для начала выясним, кто открыл закон сохранения и превращения энергии. В 1841 году английским физиком Джоулем и русским ученым Ленцем параллельно были проведены эксперименты, в результате которых ученым удалось на практике выяснить связь между механической работой и теплотой.

    Многочисленные исследования, проводимые физиками в разных уголках нашей планеты, предопределили открытие закона сохранения и превращения энергии. В середине девятнадцатого века немецким ученым Майером была дана его формулировка. Ученый попробовал обобщить всю информацию об электричестве, механическом движении, магнетизме, физиологии человека, существовавшую в тот промежуток времени.

    Примерно в этот же период аналогичные мысли были высказаны учеными в Дании, Англии, Германии.

    Эксперименты с теплотой

    Несмотря на многообразие идей, касающихся теплоты, полное представление о ней было дано только русским ученым Михаилом Васильевичем Ломоносовым. Современники не поддержали его идеи, считали, что теплота не связана с движением мельчайшим частиц, из которых состоит вещество.

    Закон сохранения и превращения механической энергии, предложенный Ломоносовым, был поддержан только после того, как в ходе экспериментов Румфорду удалось доказать наличие движения частиц внутри вещества.

    Для получения теплоты физик Дэви пытался плавить лед, осуществлял трение друг о друга двух кусков льда. Он выдвинул гипотезу, согласно которой теплота рассматривалась в качестве колебательного движения частиц материи.

    Закон сохранения и превращение энергии по Майеру предполагал неизменность сил, вызывающих появление теплоты. Подобная идея была раскритикована другими учеными, которые напоминали о том, что сила связана со скоростью и массой, следовательно, ее значение не могло оставаться неизменной величиной.

    В конце девятнадцатого века Майер обобщил свои идеи в брошюре и попытался разрешить актуальную проблему теплоты. Как использовался в то время закон сохранения и превращения энергии? В механике не было единого мнения относительно способов получения, превращения энергии, поэтому до конца девятнадцатого века этот вопрос оставался открытым.

    Особенность закона

    Закон сохранения и превращение энергии является одним из фундаментальных, позволяющих при определенных условиях измерять физические величины. Его называют первым началом термодинамики, основным объектом которого является сохранение этой величины в условиях изолированной системы.

    Закон сохранения и превращения энергии устанавливает связь между величиной тепловой энергии, которая попадает в зону взаимодействия различных веществ, с тем ее количеством, которое уходит из данной зоны.

    Переход одного вида энергии в другой не означает, что она исчезает. Нет, наблюдается лишь ее превращение в иную форму.

    При этом наблюдается взаимосвязь: работа - энергия. Закон сохранения и превращения энергии предполагает постоянство этой величины (полное ее количество) при любых процессах, протекающих в Это свидетельствует о том, что в процессе перехода одного вида в другой, соблюдается количественная эквивалентность. Для того чтобы дать количественную характеристику разных видов движения, в физике введена ядерная, химическая, электромагнитная, тепловая энергия.

    Современная формулировка

    Как читается закон сохранения и превращения энергии в наши дни? Классическая физика предлагает математическую запись данного постулата в виде обобщенного уравнения состояния термодинамической замкнутой системы:

    Это уравнение показывает, что полная механическая энергия замкнутой системы определяется в виде суммы кинетической, потенциальной, внутренней энергий.

    Закон сохранения и превращения энергии, формула которого была представлена выше, объясняет неизменность этой физической величины в замкнутой системы.

    Основным недостатком математической записи является ее актуальность только для замкнутой термодинамической системы.

    Незамкнутые системы

    Если учитывать принцип приращений, вполне можно распространить закон сохранения энергии и на незамкнутые физические системы. Данный принцип рекомендует записывать математические уравнения, связанные с описанием состояния системы, не в абсолютных показателях, а в их числовых приращениях.

    Чтобы в полной мере учитывались все формы энергии, предлагалось добавлять в классическое уравнение идеальной системы сумму приращений энергий, которые вызваны изменениями состояния анализируемой системы под воздействием различных форм поля.

    В обобщенном варианте имеет следующий вид:

    dW = Σi Ui dqi + Σj Uj dqj

    Именно это уравнение считается самым полным в современной физике. Именно оно стало основой закона сохранения и превращения энергии.

    Значение

    В науке нет исключений из данного закона, он управляет всеми природными явлениями. Именно на основании данного постулата можно выдвигать гипотезы о различных двигателях, включая и опровержения реальности разработки вечного механизма. Его можно применять во всех случаях, когда необходимо объяснять переходы одного вида энергии в другой.

    Применение в механике

    Как читается закон сохранения и превращения энергии в настоящее время? Его суть заключается в переходе одного вида этой величины в другой, но при этом ее общее значение остается неизменным. Те системы, в которых осуществляются механические процессы, именую консервативными. Такие системы являются идеализированными, то есть, в них не учитываются силы трения, иные виды сопротивлений, вызывающих рассеивание механической энергии.

    В консервативной системе протекают только взаимные переходы потенциальной энергии в кинетическую.

    Работа сил, которые действуют в подобной системе на тело, не связана с формой пути. Ее величина зависит от конечного и начального положения тела. В качестве примера сил такого рода в физике рассматривают силу тяжести. В консервативной системе величина работы силы на замкнутом участке равна нулю, а закон сохранения энергии будет справедлив в следующем виде: «В консервативной замкнутой системе сумма потенциальной и кинетической энергии тел, которые составляют системы, сохраняется неизменной».

    К примеру, в случае свободного падения тела происходит переход потенциальной энергии в кинетическую форму, при этом суммарное значение этих видов не изменяется.

    В заключение

    Механическую работу можно рассматривать в качестве единственного способа взаимного перехода механического движения в иные формы материи.

    Данный закон нашел применение в технике. После выключения двигателя автомобиля, происходит постепенная потеря кинетической энергии, последующая остановка транспортного средства. Исследования показали, что при этом наблюдается выделение определенного количества теплоты, следовательно, трущиеся тела нагреваются, увеличивая свою внутреннюю энергию. В случае трения либо любого сопротивления движению наблюдается переход механической энергии во внутреннюю величину, что свидетельствует о правильности закона.

    Его современная формулировка имеет вид: «Энергия изолированной системы не исчезает в никуда, не появляется из ниоткуда. В любых явлениях, существующих внутри системы, наблюдается переход одного вида энергии в иной, передача от одного тела к другому, без количественного изменения».

    После открытия данного закона физики не оставляют идею о создании вечного двигателя, в котором бы при замкнутом цикле не происходило изменения величины передаваемого системой тепла окружающему миру, в сравнении с получаемым извне теплом. Такая машина смогла бы стать неисчерпаемым источником тепла, способом решения энергетической проблемы человечества.

    Закон сохранения механической энергии.

    Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна разности потенциальной энергии:

    По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

    Следовательно:

    Или . (5.16)

    Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

    Сумма E = E k + E p есть полная механическая энергия. Получили закон сохранения полной механической энергии :

    Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

    В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

    Сила трения не является консервативной. Работа силы трения зависит от длины пути.

    Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

    При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

    Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.

    Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

    Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

    В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары .

    Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

    При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

    Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

    При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

    Статика. Равнодействующая сила. Момент силы. Условия равновесия материальной точки и твердого тела.Границы применимости классической механики.



    Похожие статьи