• Первый закон Ньютона: формула и определение. Сколько законов Ньютона существует? — Полезная информация для всех

    17.06.2019

    Быстрый ответ: всего 3 закона.

    Исаак Ньютон известен как математик, астроном, механик и один из создателей классической физики, родившийся в 1643 году в Англии. Автор работы «Математические начала натуральной философии», где он изложил три закона механики и закон всемирного тяготения. Последний не является основным законом механики, поэтому основных закона Ньютона — три.

    Первый закон Ньютона (Закон инерции)

    Первый закон Ньютона постулирует существование инерциальных систем отсчета. Инерция - это свойство тела сохранять свою скорость движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают разной инертностью. Инертность - это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуется массой тела.

    Второй закон Ньютона

    Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчета (ИСО).

    Третий закон Ньютона

    Сила действия равна силе противодействия. Определение его таково: силы, с которыми два тела действуют друг на друга, равны по величине и противоположны по направлению.

    Классическая теория тяготения Ньютона

    Закон, описывающий гравитационное взаимодействие в рамках классической механики.

    Сколько законов у Ньютона?

    Основные выводи из работ по математике Ньютон проводит в фундаментальном труде Математические начала натуральной философии 1687 г. Здесь он делает научный оборот который стал популярно переменятся в теоретических следованиях как в математике и физике например: масса, инерция,сила,количество движения,центр тяжести и т.д. И так первый закон Ньютона называют: законом инерции, поскольку движение не поддерживается ни каким воздействием.


    о движение по инерции. Инерция - это явление сохранения телом скорости движения, когда на тело не действуют никакие силы или векторная сумма всех действующих сил равна нулю Второй закон: Под действием силы F тело массой t принимает такое ускорения A что произведение массы на ускорения будет равно действующей силе.Формула второго закона То есть дифференциальный закон движения,описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Третий закон: Действию всегда есть равное и противоположное противодействие, иначе взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами. Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона

    Из самых известных законов Ньютона похоже можно назвать три фундаментальных (во всяком случае те, что нам преподовали в школе). Первый описывает сохранение состояния покоя или движения тела, но только в том случае, если на него не действуют извне другие силы. Второй разъясняет изменение количества движения или импульса, а в третьем сформулирован закон (такой кажется простой), что сила действия равна силе противодействия (а по простому выражаясь, что посеешь, то и пожнёшь). Ах да, совсем забыл про знаменитое яблоко, упавшее ему на голову, после чего появился закон Всемирного тяготения. Но это надо быть настолько гениальным человеком, чтобы связать рядовое, казалось бы событие с таким законом.


    Сколько законов Ньютона существует?

    Есть ли ещё какие-то, помимо тех трех, которые мы все проходим на уроках физики?

    Собственно три закона классической механики, основа её называются именем ньютона..

    Затем закон всемирного тяготения..

    Так что в школе изучаются четыре закона Ньютона, просто последний не носит такого названия, хотя его открыватель-Ньютон..

    Все четыре закона выведены из наблюдения за планетами и эмпирических законов Кеплера (основаны на данных астронома Тихо Браге)..

    Так что история о яблоке-всего лишь легенда.

    Кроме того Ньютон работал в оптике и открыл состав белого света (с помощью призм).

    Также он доказал, что всякий цвет можно синтезировать смешение определённых пропорций трёх основных цветов (красного, синего, зелёного)..

    Он обнаружил оптическое явление, именуемое кольцами Ньютона, основанными на интерференции света.

    Кроме того законов Ньютона (если рассмотреть строго) для механики не три..

    Три — это, те что обычно рассматриваются в школе и это для линейного движения..


    Дело в том, что есть законы Ньютона и для вращательного движения..

    Всего шесть уравнений..

    Но конечно полной аналогии между ними нет.

    Я уже отвечала на подобный вопрос и в ходе ответа открыла даже для себя много нового. Оказывается три закона Ньютона которые мы изучали на уроках в школе это далеко не все что успел открыть великий англичанин. Ньютон занимался основами дифференциального исчисления, четвертым законом Ньютона считается Закон всемирного тяготения — который пытались осмыслить задолго до него, но сэр Исаак сумел подвести под умозаключения математическую основу. Занимался Ньютон и оптикой, самым нелюбимым школьниками разделом физики и даже открыл явление интерференции — те самые кольца Ньютона. Но есть и еще пятый закон связанный с именем Ньютона — это закон теплопередачи который официально называется закон Ньютона-Рихмана.

    Пять законов и множество постулатов — вот итог творчества великого физика и масона.

    Вообще три закона Ньютона — это собирательное название трех законов, которые лежат в основе классической механики. Благодаря им можно записать уравнения движения для каждой механической системы, при этом должны быть известны силовые взаимодействия для тел, которые её составляют. Эти законы были сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии», написанной в 1687 году. Известен такой интересный факт, что при формулировке закона инерции Исаак Ньютон опирался на труды Галилео Галилея, который первым понял ошибочность утверждения, "тело, на которое ничто не действует, может только покоиться".


    кон номер два говорит нам о том, что причиной изменения скорости тела является действие на него окружающих тел. В основе третьего закона Ньютона лежит формулировка: "при взаимодействии двух тел силы, с которыми они действуют друг на друга, равны по модулю и противоположны, по направлению". Таким образом, законы Ньютона, представляя собой основу классической механики, рассматривают взаимодействия макроскопических тел, которые участвуют в нерелятивистских движениях (то есть их скорости намного меньше скорости света). Но, плюс ко всему тела описываются как материальные точки, а вот движение рассматривается относительно инерциальных систем отсчета.

    www.bolshoyvopros.ru

    Зако?ны Нью?то?на - три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силы, действующие на составляющие её тела. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год) .

    Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как Закон инерции . Инерция - это свойство тела сохранять скорость своего движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают разной инертностью. Инертность - это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуется массой тела.


    В современной физике первый закон Ньютона принято формулировать в следующем виде :

    Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

    Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:

    Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

    С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить термином «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (например, вращающейся) системе отсчёта закон инерции неверен, поэтому ньютоновская формулировка была заменена постулатом существования инерциальных систем отсчета.


    Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

    Масса материальной точки при этом полагается величиной постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами .

    В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

    При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

    Второй закон Ньютона может быть также сформулирован в эквивалентной форме с использованием понятия импульс:

    В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней внешних сил.

    Когда на материальную точку действуют несколько сил, с учётом принципа суперпозиции, второй закон Ньютона записывается в виде:

    Второй закон Ньютона, как и вся классическая механика, справедлив только для движения тел со скоростями, много меньшими скорости света. При движении тел со скоростями, близкими к скорости света, используется релятивистское обобщение второго закона, получаемое в рамках специальной теории относительности.

    Историческая формулировка

    Исходная формулировка Ньютона:

    Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

    Интересно, что если добавить требование инерциальности для системы отсчёта, то в такой формулировке этот закон справедлив даже в релятивистской механике.

    Современная формулировка

    Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

    Закон утверждает, что силы возникают лишь попарно, причём любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, сила всегда есть результат взаимодействия тел. Существование сил, возникших самостоятельно, без взаимодействующих тел, невозможно .

    Ньютон дал следующую формулировку закона :

    Действию всегда есть равное и противоположное противодействие, иначе - взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны.

    Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость .

    Закон сохранения импульса

    Закон сохранения импульса утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю .

    Закон сохранения механической энергии

    Далее, если все силы консервативны, то возникает закон сохранения механической энергии взаимодействующих тел: полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.

    Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона.

    Помимо сил, о которых идёт речь во втором и третьем законах Ньютона, в механике вводят в рассмотрение так называемые силы инерции . Обычно речь идёт о силах инерции двух различных типов . Сила первого типа (Д’Аламберова сила инерции ) представляет собой векторную величину, равную произведению массы материальной точки на её ускорение, взятое со знаком минус. Силы второго типа (Эйлеровы силы инерции ) используются для получения формальной возможности записи уравнений движения тел в неинерциальных системах отсчёта в виде, совпадающем с видом второго закона Ньютона.


    определению эйлерова сила инерции равна произведению массы материальной точки на разность между значениями её ускорения в той неинерциальной системе отсчёта, для которой эта сила вводится, с одной стороны, и в какой-либо инерциальной системе отсчёта, с другой .Определяемые таким образом силы инерции силами в смысле законов Ньютона не являются . Данный факт служит основанием для утверждения о том, что они не являются физическими силами ; ту же мысль выражают, называя их фиктивными , кажущимися или псевдосилами .

    Законы Ньютона и Лагранжева механика

    Законы Ньютона - только один из способов формулирования классической механики. В рамках Лагранжевой механики имеется одна-единственная формула (запись действия) и один-единственный постулат (тела движутся так, чтобы действие было стационарным), и из этого можно вывести все законы Ньютона, правда, только для лагранжевых систем (в частности для консервативных систем). Следует, однако, отметить, что все известные фундаментальные взаимодействия описываются именно лагранжевыми системами. Более того, в рамках Лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.

    Решение уравнений движения

    Уравнение F > = m a > =m> является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию (перемещение) механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости.

    Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

    Пространство и Время Ньютона

    Современная физика отказалась от концепции абсолютного пространства и времени классической физики Ньютона. Релятивистская теория продемонстрировала, что пространство и время относительны. Нет, по-видимому, фраз, повторяемых более часто в работах по истории физики и философии. Однако все не так просто, и подобные утверждения требуют определенных уточнений (правда, достаточно лингвистического толка). Тем не менее, обращения истокам иногда оказывается очень полезным для понимания современного состояния науки.

    Время, как известно, можно измерить при помощи равномерного периодического процесса. Однако, не имея времени, откуда мы знаем, что процессы равномерны ? Очевидны логические трудности в определении подобных первичных понятий. Равномерность хода часов должна постулироваться и называться равномерным течением времени. Например, определяя время при помощи равномерного и прямолинейного движения, мы тем самым превращаем первый закон Ньютона в определение равномерного хода времени. Часы идут равномерно, если тело, на которое не действуют силы, движется прямолинейно и равномерно (по этим часам). При этом движение мыслится относительно инерциальной системы отсчета, которая для своего определения также нуждается в первом законе Ньютона и равномерно идущих часах.

    Другая трудность связана с тем, что два одинаково равномерных на данном уровне точности процесса могут оказаться относительно неравномерными при более точном измерении. И мы постоянно оказываемся перед необходимостью выбора все более надежного эталона равномерности хода времени.

    Как уже отмечалось, процесс считается равномерным и измерение времени с его помощью приемлемым до тех пор, пока все другие явления описываются максимально просто. Очевидно, что требуется определенная степень абстрагирования при подобном определении времени. Постоянный поиск правильных часов связан с нашим убеждением в некотором объективном свойстве времени обладать равномерным темпом хода.

    Ньютон отлично понимал существование подобных трудностей. Более того, в своих «Началах» он и ввел понятия абсолютного и относительного времени, чтобы подчеркнуть необходимость абстрагирования, определения на основе относительного (обыденного, измеряемого) времени его некоторой математической модели — времени абсолютного. И в этом его понимание сущности времени не отличается от современного, хотя из-за различия в терминологии возникла определённая путаница.

    Обратимся к «Математическим Началам Натуральной Философии» (1687 г.). Сокращённые формулировки определения Ньютоном абсолютного и относительного времени звучат следующим образом: Абсолютное (математическое) время без всякого отношения к чему-либо внешнему протекает равномерно. Относительное (обыденное) время есть мера продолжительности, постигаемая чувствами при посредстве какого-либо движения. Соотношение между этими двумя понятиями и необходимость в них ясно видна из следующего пояснения: Абсолютное время различается в астрономии от обыденного солнечного времени уравнением времени. Ибо естественные солнечные сутки, принимаемые при обыденном измерении времени за равные, на самом деле между собою неравны. Это неравенство и исправляется астрономами, чтобы при измерениях движений небесных светил применять более правильное время. Возможно, что не существует (в природе) такого равномерного движения, которым время могло бы измеряться с совершенною точностью. Все движения могут ускоряться или замедляться, течение же абсолютного времени изменяться не может. Относительное время Ньютона есть время измеряемое, тогда как время абсолютное есть его математическая модель со свойствами, выводимыми из относительного времени при помощи абстрагирования. Вообще, говоря о времени, пространстве и движении, Ньютон постоянно подчеркивает, что они постигаются нашими чувствами и тем самым являются обыденными (относительными): Относительные количества не суть те самые количества, коих имена им обычно придаются, а суть лишь результаты измерений сказанных количеств (истинные или ложные), постигаемые чувствами и принимаемые обычно за сами количества. Необходимость построения модели этих понятий требует введения математических (абсолютных) объектов, неких идеальных сущностей, не зависящих от неточности приборов. Утверждение Ньютона от том, что «абсолютное время протекает равномерно без всякого отношения к чему-либо внешнему» обычно истолковывают в смысле независимости времени от движения. Однако, как видно из приведенных выше цитат, Ньютон говорит о необходимости абстрагирования от возможных неточностей равномерного хода любых часов. Для него абсолютное и математическое время являются синонимами!

    Ньютон нигде не обсуждает вопрос о том, что скорость течения времени может отличаться в различных относительных пространствах (системах отсчета). Безусловно, классическая механика подразумевает одинаковую равномерность хода времени для всех систем отсчета. Однако это свойство времени кажется настолько очевидным, что Ньютон, очень точный в своих формулировках, не обсуждает его и не формулирует как одно из определений или законов своей механики. Именно это свойство времени было отброшено теорией относительности. Абсолютное же время в понимании Ньютона по-прежнему присутствует в парадигме современной физики.

    Перейдём теперь к физическому пространству Ньютона. Если понимать под абсолютным пространством существование некоторой выделенной, привилегированной системы отсчета, то излишне напоминать, что в классической механике его нет. Блестящее описание Галилеем невозможности определить абсолютное движение корабля — яркий тому пример. Таким образом, релятивистская теория и не могла отказаться от того, что в классической механики отсутствовало.

    Тем не менее, у Ньютона вопрос о соотношении абсолютного и относительного пространства недостаточно ясен. С одной стороны, и для времени, и для пространства термин «относительный» используется в смысле «измеряемая величина» (постигаемая нашими чувствами), а «абсолютный» — в смысле «её математическая модель»: Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным. Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел, и которое в обыденной жизни принимается за пространство неподвижное. С другой стороны, в тексте присутствуют рассуждения о моряке на корабле, которые можно истолковать и как описание выделенной системы отсчета: Если же и сама Земля движется, то истинное абсолютное движение тела найдется по истинному движению Земли в неподвижном пространстве и по относительным движениям корабля по отношению к Земле и тела по кораблю. Таким образом, вводится понятие абсолютного движения, которое противоречит принципу относительности Галилея. Однако абсолютное пространство и движение вводятся для того, чтобы тут же поставить под сомнение их существование: Однако совершенно невозможно ни видеть, ни как-нибудь иначе различать при помощи наших чувств отдельные части этого пространства одну от другой, и вместо них приходится обращаться к измерениям, доступным чувствам. По положениям и расстояниям предметов от какого-либо тела, принимаемого за неподвижное, определяем места вообще. Невозможно также определить истинный их (тел) покой по относительному их друг другу положению. Возможно, необходимость рассмотрения абсолютного пространства и абсолютного движения в нем связана с анализом соотношения инерциальных и неинерциальных систем отсчета. Обсуждая опыт с вращающимся ведром, которое наполнено водой, Ньютон показывает, что движение вращения является абсолютным в том смысле, что его можно определить, не выходя за рамки системы ведро-вода, по форме вогнутой поверхности воды. В этом отношении его точка зрения также совпадает с современной. Недоразумение, выраженное в фразах, приведенных в начале раздела, возникло из-за заметных отличий в семантике употребления терминов «абсолютное» и «относительное» Ньютоном и современными физиками. Сейчас, говоря об абсолютной сущности, мы подразумеваем, что она описывается одинаковым образом для различных наблюдателей. Относительные вещи могут выглядеть по-разному для различных наблюдателей. Вместо «абсолютное пространство и время» мы сегодня говорим «математическая модель пространства и времени». Поэтому воистину насилуют смысл священного писания те, кто эти слова истолковывают в нем.

    Математическая структура как классической механики, так и релятивистской теории хорошо известна. Свойства, которыми наделяют эти теории пространство и время, однозначно следуют из этой структуры. Туманные же (философские) рассуждения об устаревшей «абсолютности» и революционной «относительности» вряд ли приближают нас к разгадке Главной Тайны.

    Теория относительности по праву носит это название, так как, действительно, продемонстрировала, что многие вещи, кажущиеся абсолютными при малых скоростях, таковыми не являются при больших.

    Законы механики Ньютона

    Законы Ньютона — в зависимости от того, под каким углом на них посмотреть, — представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки — блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.

    Однако Исаак Ньютон взял названные в его честь законы не из воздуха. Они, фактически, стали кульминацией долгого исторического процесса формулирования принципов классической механики. Мыслители и математики — упомянем лишь Галилея (см. Уравнения равноускоренного движения) — веками пытались вывести формулы для описания законов движения материальных тел — и постоянно спотыкались о то, что лично я сам для себя называю непроговоренными условностями, а именно — обе основополагающие идеи о том, на каких принципах зиждется материальный мир, которые настолько устойчиво вошли в сознание людей, что кажутся неоспоримыми. Например, древним философам даже в голову не приходило, что небесные тела могут двигаться по орбитам, отличающимся от круговых; в лучшем случае возникала идея, что планеты и звезды обращаются вокруг Земли по концентрическим (то есть вложенным друг в друга) сферическим орбитам. Почему? Да потому, что еще со времен античных мыслителей Древней Греции никому не приходило в голову, что планеты могут отклоняться от совершенства, воплощением которой и является строгая геометрическая окружность. Нужно было обладать гением Иоганна Кеплера, чтобы честно взглянуть на эту проблему под другим углом, проанализировать данные реальных наблюдений и вывести из них, что в действительности планеты обращаются вокруг Солнца по эллиптическим траекториям (см. Законы Кеплера).

    Первый закон Ньютона

    Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе. Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу. Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым. При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.

    Представьте себе что-то типа легкоатлетического молота — ядро на конце струны, раскручиваемое вами вокруг вашей головы. Ядро в этом случае движется не по прямой, а по окружности — значит, согласно первому закону Ньютона, его что-то удерживает; это «что-то» — и есть центростремительная сила, которую вы прилагаете к ядру, раскручивая его. Реально вы и сами можете ее ощутить — рукоять легкоатлетического молота ощутимо давит вам на ладони. Если же вы разожмете руку и выпустите молот, он — в отсутствие внешних сил — незамедлительно отправится в путь по прямой. Точнее будет сказать, что так молот поведет себя в идеальных условиях (например, в открытом космосе), поскольку под воздействием силы гравитационного притяжения Земли он будет лететь строго по прямой лишь в тот момент, когда вы его отпустили, а в дальнейшем траектория полета будет всё больше отклоняться в направлении земной поверхности. Если же вы попробуете действительно выпустить молот, выяснится, что отпущенный с круговой орбиты молот отправится в путь строго по прямой, являющейся касательной (перпендикулярной к радиусу окружности, по которой его раскручивали) с линейной скоростью, равной скорости его обращения по «орбите».

    Теперь заменим ядро легкоатлетического молота планетой, молотобойца — Солнцем, а струну — силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.

    Такой анализ происходящего при обращении одного тела вокруг другого по круговой орбите на первый взгляд кажется чем-то само собой разумеющимся, но не стоит забывать, что он вобрал в себя целый ряд умозаключений лучших представителей научной мысли предшествующего поколения (достаточно вспомнить Галилео Галилея). Проблема тут в том, что при движении по стационарной круговой орбите небесное (и любое иное) тело выглядит весьма безмятежно и представляется пребывающим в состоянии устойчивого динамического и кинематического равновесия. Однако, если разобраться, сохраняется только модуль (абсолютная величина) линейной скорости такого тела, в то время как ее направление постоянно меняется под воздействием силы гравитационного притяжения. Это и значит, что небесное тело движется равноускоренно . Кстати, сам Ньютон называл ускорение «изменением движения».

    Первый закон Ньютона играет и еще одну важную роль с точки зрения нашего естествоиспытательского отношения к природе материального мира. Он подсказывает нам, что любое изменение в характере движения тела свидетельствует о присутствии внешних сил, воздействующих на него. Условно говоря, если мы наблюдаем, как железные опилки, например, подпрыгивают и налипают на магнит, или, доставая из сушилки стиральной машины белье, выясняем, что вещи слиплись и присохли одна к другой, мы можем чувствовать себя спокойно и уверенно: эти эффекты стали следствием действия природных сил (в приведенных примерах это силы магнитного и электростатического притяжения соответственно).

    Второй закон Ньютона

    Если первый закон Ньютона помогает нам определить, находится ли тело под воздействием внешних сил, то второй закон описывает, что происходит с физическим телом под их воздействием. Чем больше сумма приложенных к телу внешних сил, гласит этот закон, тем большее ускорение приобретает тело. Это раз. Одновременно, чем массивнее тело, к которому приложена равная сумма внешних сил, тем меньшее ускорение оно приобретает. Это два. Интуитивно эти два факта представляются самоочевидными, а в математическом виде они записываются так:

    где F — сила, m — масса, а — ускорение. Это, наверное, самое полезное и самое широко используемое в прикладных целях из всех физических уравнений. Достаточно знать величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени.

    Именно второй закон Ньютона придает всей классической механике ее особую прелесть — начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда пытливого наблюдателя. Назовите мне пространственные координаты и скорости всех материальных точек во Вселенной, словно говорит нам Ньютон, укажите мне направление и интенсивность всех действующих в ней сил, и я предскажу вам любое ее будущее состояние. И такой взгляд на природу вещей во Вселенной бытовал вплоть до появления квантовой механики.

    Третий закон Ньютона

    За этот закон, скорее всего, Ньютон и снискал себе почет и уважение со стороны не только естествоиспытателей, но и ученых-гуманитариев и попросту широких масс. Его любят цитировать (по делу и без дела), проводя самые широкие параллели с тем, что мы вынуждены наблюдать в нашей обыденной жизни, и притягивают чуть ли не за уши для обоснования самых спорных положений в ходе дискуссий по любым вопросам, начиная с межличностных и заканчивая международными отношениями и глобальной политикой. Ньютон, однако, вкладывал в свой названный впоследствии третьим закон совершенно конкретный физический смысл и едва ли замышлял его в ином качестве, нежели как точное средство описания природы силовых взаимодействий. Закон этот гласит, что если тело А воздействует с некоей силой на тело В, то тело В также воздействует на тело А с равной по величине и противоположной по направлению силой. Иными словами, стоя на полу, вы воздействуете на пол с силой, пропорциональной массе вашего тела. Согласно третьему закону Ньютона пол в это же время воздействует на вас с абсолютно такой же по величине силой, но направленной не вниз, а строго вверх. Этот закон экспериментально проверить нетрудно: вы постоянно чувствуете, как земля давит на ваши подошвы.

    Тут важно понимать и помнить, что речь у Ньютона идет о двух силах совершенно разной природы, причем каждая сила воздействует на «свой» объект. Когда яблоко падает с дерева, это Земля воздействует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно устремляется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с равной силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, это уже следствие второго закона Ньютона. Масса яблока по сравнению с массой Земли низка до несопоставимости, поэтому именно его ускорение заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно. (В случае падения яблока центр Земли смещается вверх на расстояние менее радиуса атомного ядра.)

    По совокупности же три закона Ньютона дали физикам инструменты, необходимые для начала комплексного наблюдения всех явлений, происходящих в нашей Вселенной. И, невзирая на все колоссальные подвижки в науке, произошедшие со времен Ньютона, чтобы спроектировать новый автомобиль или отправить космический корабль на Юпитер, вы воспользуетесь все теми же тремя законами Ньютона.

    1. Законы классической механики (законы Ньютона). Границы применения законов Ньютона.

    Класси?ческая меха?ника - вид механики , основанный на законах Ньютона и принципе относительности Галилея .

    Первый закон – Существуют инерциальная система,в которой тело,предоставленное самому себе,сохраняет состояние покоя или прямолинейного равномерного движения до тех пор,пока внешнее воздействие не выведет его из этого состояния.Гелиоцентрическая система-инерциальная система.Вывод-скорость тела остается постоянной, если действия на него других тел скомпенсированы.

    Второй закон Ньютона : В инерциальных системах отсчета произведение массы тела на его ускорение равно векторной сумме сил, действующих на тело.

    где - результирующий вектор сил, действующих на тело; - вектор ускорения тела; m - масса тела.

    Второй закон Ньютона может быть также записан в терминах изменения импульса тела:

    Третий закон Ньютона В инерциальных системах отсчета действие тел друг на друга носит характер взаимодействия: с какой силой 1е тело действует на 2е, с такой же силой, равной по модулю и противоположной по направлению 2е тело действует на 1е. Наличие третьего закона Ньютона обеспечивает выполнение закона сохранения импульса для системы тел.

    Границы применения законов ньютона.

    Классическая механика даёт очень точные результаты в рамках повседневного опыта. Однако её применение ограничено телами, скорости которых много меньше скорости света , а размеры значительно превышают размеры атомов и молекул .

    2. Волновое уравнение для поперечных упругих волн в струне.

    Поперечные волны (волны сдвига, S-волны) - частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);

    3. Скорость поперечных упругих волн в струне.

    Струной называется гибкая натянутая нить, закрепленная в точках своего начала и конца.

    Упру?гие во?лны (звуковые волны) - волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил.

    Набору значений?n длин волн соответствует набор возможных частот fn:

    где V– скорость распространения поперечных волн по струне.

    скорость распространения поперечных волн по струне. ,

    где ? — погонной массы (то есть массы единицы длины) и T — силы натяжения.

    4. Общее решение волнового уравнения.

    В общем случае волновое уравнение записывается в виде, где - оператор Лапласа, - неизвестная функция, - время, - пространственная переменная, - фазовая скорость. (Фазовая скорость - скорость перемещения точки, обладающей постоянной фазой колебательного движения, в пространстве вдоль заданного направления.)

    Легко проверить, что являются решениями волновых уравнений.

    Эти решения описывают электромагнитную волну, у которой вектор направлен вдоль оси y , вектор — вдоль оси z , волна распространяется вдоль оси x , таким образом, векторы, образуют правую тройку.

    Сколько законов механики у ньютона

    Масса — основная динамическая характеристика тела, количественная мера его инертности, т. е. способности тела приобретать определенное ускорение под действием силы. Чем больше масса тела, тем больше его инертность, тем сложнее вывести тело из первоначального состояния, т. е. заставить его двигаться, или, наоборот, остановить его движение.

    Второй закон Ньютона. Введя понятие массы, сформулируем окончательно второй закон Ньютона :

    Ускорение тела прямо пропорционально силе, действующей на него, и обратно пропорционально его массе: .

    Эта формула выражает один из самых фундаментальных законов природы, которому с удивительной точностью подчиняется движение как громадных небесных тел, так и мельчайших песчинок. С помощью этого закона можно рассчитать движение поршня в цилиндре автомобиля и сложнейшие траектории космических кораблей.

    Для решения задач мы обычно пользуемся другой формулировкой второго закона Ньютона.

    Произведение массы тела на ускорение равно сумме действующих на тело сил:

    Заметим, что если на тело не действуют силы или их сумма равна нулю, то относительно инерциальной системы отсчета и, следовательно, . Однако это не означает, что первый закон Ньютона есть следствие второго. Первый закон Ньютона устанавливает существование инерциальных систем отсчета, а именно таких систем, в которых справедлив второй закон Ньютона.

    Измерение массы . Используя второй закон Ньютона, можно определить массу тела, измерив независимо силу и ускорение:

    Если измерить массы m 1 , m 2 , m 3 , . нескольких тел, а затем соединить все эти тела вместе и измерить массу m одного объединенного тела, то будет выполняться простое соотношение: m=m 1 +m 2 +m 3 + . .

    Справедливо и обратное: если разделить тело на части, то сумма масс этих частей будет равна массе тела до разделения.

    Сформулирован основной закон динамики — второй закон Ньютона. Его нужно помнить и понимать смысл всех трех величин, входящих в этот закон.

    Базирующимися на обобщении экспериментальных результатов.

    Первый закон Ньютона

    Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как закон инерции . Инерция (она же инертность) - свойство тела сохранять скорость своего движения неизменной по величине и направлению, когда не действуют никакие силы, а также свойство тела сопротивляться изменению его скорости. Чтобы изменить скорость движения тела, необходимо приложить некоторую силу, причём результат действия одной и той же силы на разные тела будет различным: тела обладают разной инерцией (инертностью), величина которой характеризуется их массой .

    Современная формулировка

    В современной физике первый закон Ньютона принято формулировать в следующем виде :

    где p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} - импульс точки, v → {\displaystyle {\vec {v}}} - её скорость , а t {\displaystyle t} - время . При такой формулировке, как и при предшествующей, полагают, что масса материальной точки неизменна во времени .

    Иногда предпринимаются попытки распространить сферу применения уравнения d p → d t = F → {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}}} и на случай тел переменной массы. Однако, вместе с таким расширительным толкованием уравнения приходится существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила .

    Замечания

    Когда на материальную точку действуют несколько сил, с учётом принципа суперпозиции , второй закон Ньютона записывается в виде:

    m a → = ∑ i = 1 n F i → {\displaystyle m{\vec {a}}=\sum _{i=1}^{n}{\vec {F_{i}}}} d p → d t = ∑ i = 1 n F i → . {\displaystyle {\frac {d{\vec {p}}}{dt}}=\sum _{i=1}^{n}{\vec {F_{i}}}.}

    Второй закон Ньютона, как и вся классическая механика, справедлив только для движения тел со скоростями, много меньшими скорости света . При движении тел со скоростями, близкими к скорости света, используется релятивистское обобщение второго закона , получаемое в рамках специальной теории относительности .

    Следует учитывать, что нельзя рассматривать частный случай (при F → = 0 {\displaystyle {\vec {F}}=0} ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

    Историческая формулировка

    Исходная формулировка Ньютона:

    Интересно, что если добавить требование инерциальности для системы отсчёта, то в такой формулировке этот закон справедлив даже в релятивистской механике .

    Третий закон Ньютона

    Этот закон описывает, как взаимодействуют две материальные точки. Возьмём для примера замкнутую систему, состоящую из двух материальных точек. Первая точка может действовать на вторую с некоторой силой , а вторая - на первую с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия F → 1 → 2 {\displaystyle {\vec {F}}_{1\to 2}} равна по модулю и противоположна по направлению силе противодействия F → 2 → 1 {\displaystyle {\vec {F}}_{2\to 1}} .

    Современная формулировка

    Закон утверждает, что силы возникают лишь попарно, причём любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, сила всегда есть результат взаимодействия тел. Существование сил, возникших самостоятельно, без взаимодействующих тел, невозможно .

    Историческая формулировка

    Ньютон дал следующую формулировку закона :

    Следствия законов Ньютона

    Законы Ньютона являются аксиомами классической ньютоновской механики. Из них, как следствия, выводятся уравнения движения механических систем, а также «законы сохранения», указанные ниже. Разумеется, есть и законы (например, всемирного тяготения или Гука), не вытекающие из трёх постулатов Ньютона.

    Уравнения движения

    Уравнение F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} является дифференциальным уравнением : ускорение есть вторая производная от координаты по времени . Это значит, что эволюцию (перемещение) механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости.

    Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция , колебания , волны .

    Закон сохранения импульса

    Закон сохранения импульса утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная , если векторная сумма внешних сил, действующих на систему тел, равна нулю .

    Закон сохранения механической энергии

    Законы Ньютона и силы инерции

    Использование законов Ньютона предполагает задание некой ИСО. Однако, на практике приходится иметь дело и с неинерциальными системами отсчёта . В этих случаях, помимо сил, о которых идёт речь во втором и третьем законах Ньютона, в механике вводятся в рассмотрение так называемые силы инерции .

    Обычно речь идёт о силах инерции двух различных типов . Сила первого типа (даламберова сила инерции ) представляет собой векторную величину, равную произведению массы материальной точки на её ускорение, взятое со знаком минус. Силы второго типа (эйлеровы силы инерции ) используются для получения формальной возможности записи уравнений движения тел в неинерциальных системах отсчёта в виде, совпадающем с видом второго закона Ньютона. По определению, эйлерова сила инерции равна произведению массы материальной точки на разность между значениями её ускорения в той неинерциальной системе отсчёта, для которой эта сила вводится, с одной стороны, и в какой-либо инерциальной системе отсчёта , с другой . Определяемые таким образом силы инерции силами в истинном смысле слова не являются , их называют фиктивными , кажущимися или псевдосилами .

    Законы Ньютона в логике курса механики

    Существуют методологически различные способы формулирования классической механики, то есть выбора её фундаментальных постулатов , на основе которых затем выводятся законы-следствия и уравнения движения. Придание законам Ньютона статуса аксиом, опирающихся на эмпирический материал, - только один из таких способов («ньютонова механика»). Этот подход принят в средней школе, а также в большинстве вузовских курсов общей физики.

    Альтернативным подходом, использующимся преимущественно в курсах теоретической физики, выступает лагранжева механика . В рамках лагранжева формализма имеются одна-единственная формула (запись действия) и один-единственный постулат (тела движутся так, чтобы действие было стационарным) , являющийся теоретической концепцией. Из этого можно вывести все законы Ньютона, правда, только для лагранжевых систем (в частности, для консервативных систем). Следует, однако, отметить, что все известные фундаментальные взаимодействия описываются именно лагранжевыми системами. Более того, в рамках лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.

    Исторический очерк

    Практика применения машин в мануфактурной промышленности, строительство зданий, кораблестроение, использование артиллерии позволили ко времени Ньютона накопиться большому числу наблюдений над механическими процессами. Понятия инерции, силы, ускорения всё более прояснялись в течение XVII столетия. Работы Галилея , Борелли , Декарта , Гюйгенса по механике уже содержали все необходимые теоретические предпосылки для создания Ньютоном в механике логичной и последовательной системы определений и теорем .

    Страница «Начал» Ньютона с аксиомами механики

    Оригинальный текст (лат.)

    LEX I
    Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quantenus a viribus impressis cogitur statum illum mutare.

    LEX II
    Mutationem motus proportionalem esse vi motrici impressae et fieri secundum lineam rectam qua vis illa imprimitur.

    Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi.

    Русский перевод этих формулировок законов см. в предыдущих разделах.

    Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта ) и сила . Он ввёл в физику понятие массы как меры инертности тела и, одновременно, его гравитационных свойств (ранее физики пользовались понятием вес ).

    В середине XVII века ещё не существовало современной техники дифференциального и интегрального исчисления . Соответствующий математический аппарат в 1680-е годы параллельно создавался самим Ньютоном (1642-1727), а также Лейбницем (1646-1716). Завершили математизацию основ механики Эйлер (1707-1783) и Лагранж (1736-1813).

    Примечания

    1. Исаак Ньютон. Математические начала натуральной философии. Перевод с латинского и примечания А. Н. Крылова / под ред. Полака Л. С.. - М. : Наука, 1989. - С. 40-41. - 690 с. - (Классики науки). - 5 000 экз. - ISBN 5-02-000747-1 .
    2. Тарг С. М. Ньютона законы механики // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Большая российская энциклопедия, 1992. - Т. 3: Магнитоплазменный - Пойнтинга теорема. - С. 370. - 672 с. - 48 000 экз. - ISBN 5-85270-019-3 .
    3. Инерциальная система отсчёта // Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова . - М. : Советская Энциклопедия , 1988. - Т. 2. - С. 145. - ISBN 5-85270-034-7 .
    4. «Дополнительной характеристикой (по сравнению с геометрическими характеристиками) материальной точки является скалярная величина m - масса материальной точки, которая, вообще говоря, может быть как постоянной, так и переменной величиной. … В классической ньютоновской механике материальная точка обычно моделируется геометрической точкой с присущей ей постоянной массой) являющейся мерой её инерции.» стр. 137 Седов Л. И. , Цыпкин А. Г. Основы макроскопических теорий гравитации и электромагнетизма. М: Наука, 1989.
    5. Маркеев А. П. Теоретическая механика. - М. : ЧеРО, 1999. - С. 87. - 572 с. «Масса материальной точки считается постоянной величиной, не зависящей от обстоятельств движения».
    6. Голубев Ю. Ф. Основы теоретической механики. - М. : МГУ, 2000. - С. 160. - 720 с. - ISBN 5-211-04244-1 . «Аксиома 3.3.1. Масса материальной точки сохраняет своё значение не только во времени, но и при любых взаимодействиях материальной точки с другими материальными точками независимо от их числа и от природы взаимодействий».

    В качестве первого из трех законов. Поэтому этот закон называют первым законом Ньютона .

    Первый закон механики , или закон инерции был сформулирован Ньютоном следующим образом:

    Любое тело удерживается в состоянии покоя или равномерного прямолинейного движения, пока под действием приложенных сил не изменяет это состояние .

    В окружении любого тела, покоится оно или движется, есть другие тела, некоторые из которых или все как-то действуют на тело, влияют на состояние его движения. Чтобы выяснить влияние окружающих тел, надо исследовать каждый отдельный случай.

    Рассмотрим какое-либо покоящееся тело, не обладающее ускорением, а скорость постоянна и равна нулю. Допустим, это будет шарик, подвешенный на резиновом шнуре. Он находится в покое относительно Земли. Около шарика множество различных тел: шнур, на котором он висит, множество предметов в комнате и других помещениях и, конечно, Земля. Однако, действие всех этих тел на шарик не одинаково. Если, например, убрать мебель в комнате, это не окажет какого-либо влияния на шарик. Но если перерезать шнур, шарик под влиянием Земли начнет падать вниз с ускорением. Но пока шнур не был перерезан, шарик находился в покое. Этот простой опыт показывает, что из всех тел, окружающих шарик, только два заметно влияют на него: резиновый шнур и Земля. Их совместное влияние и обеспечивает состояние покоя шарика. Стоило устранить одно из этих тел — шнур, и состояние покоя нарушилось. Если бы возможно было убрать Землю, это тоже нарушило бы покой шарика: он стал бы двигаться в противоположном направлении.

    Отсюда приходим к выводу, что действия на шарик двух тел — шнура и Земли, компенсируют (уравновешивают) друг друга. Когда говорят, что действия двух или нескольких тел компенсируют друг друга, то это значит, что результат их совместного действия такой же, как если бы этих тел вовсе не было.

    Рассмотренный пример, как и другие подобные примеры, позволяют сделать следующий вывод: если действия тел компенсируют друг друга, то тело под влиянием этих тел находится в состоянии покоя.

    Таким образом, мы пришли к одному из основных законов механики , который называют первым законом Ньютона :

    Существуют такие системы отсчета, относительно которых движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела или действие других тел компенсируется.

    Однако, как выяснилось со временем, первый закон Ньютона выполняется только в инерциальных системах отсчета . Поэтому с точки зрения современных представлений закон Ньютона формулируют следующим образом:

    Системы отсчета, относительно которых свободное тело при компенсации внешних воздействий движется равномерно и прямолинейно, называют инерциальными системами отсчета .

    Свободным телом в этом случае называют тело, на которое другие тела не оказывают воздействия.

    Необходимо помнить, что в первом законе Ньютона рассматриваются тела, которые могут быть представлены в качестве материальных точек.

    Основные выводи из работ по математике Ньютон проводит в фундаментальном труде Математические начала натуральной философии 1687 г. Здесь он делает научный оборот который стал популярно переменятся в теоретических следованиях как в математике и физике например: масса, инерция,сила,количество движения,центр тяжести и т.д. И так первый закон Ньютона называют: законом инерции, поскольку движение не поддерживается ни каким воздействием. Это движение по инерции. Инерция - это явление сохранения телом скорости движения, когда на тело не действуют никакие силы или векторная сумма всех действующих сил равна нулю Второй закон: Под действием силы F тело массой t принимает такое ускорения A что произведение массы на ускорения будет равно действующей силе.Формула второго закона То есть дифференциальный закон движения,описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Третий закон: Действию всегда есть равное и противоположное противодействие, иначе взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами.Закон отражает принцип парного взаимодействия. То есть все силы в природе рождаются парами. Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона

    Из самых известных законов Ньютона похоже можно назвать три фундаментальных (во всяком случае те, что нам преподовали в школе). Первый описывает сохранение состояния покоя или движения тела, но только в том случае, если на него не действуют извне другие силы. Второй разъясняет изменение количества движения или импульса, а в третьем сформулирован закон (такой кажется простой), что сила действия равна силе противодействия (а по простому выражаясь, что посеешь, то и пожнёшь). Ах да, совсем забыл про знаменитое яблоко, упавшее ему на голову, после чего появился закон Всемирного тяготения. Но это надо быть настолько гениальным человеком, чтобы связать рядовое, казалось бы событие с таким законом.

    Сколько законов Ньютона существует?

    Есть ли ещё какие-то, помимо тех трех, которые мы все проходим на уроках физики?

    Собственно три закона классической механики, основа её называются именем ньютона..

    Затем закон всемирного тяготения..

    Так что в школе изучаются четыре закона Ньютона, просто последний не носит такого названия, хотя его открыватель-Ньютон..

    Все четыре закона выведены из наблюдения за планетами и эмпирических законов Кеплера (основаны на данных астронома Тихо Браге)..

    Так что история о яблоке-всего лишь легенда.

    Кроме того Ньютон работал в оптике и открыл состав белого света (с помощью призм).

    Также он доказал, что всякий цвет можно синтезировать смешение определённых пропорций трёх основных цветов (красного, синего, зелёного)..

    Он обнаружил оптическое явление, именуемое кольцами Ньютона, основанными на интерференции света.

    Кроме того законов Ньютона (если рассмотреть строго) для механики не три..

    Три — это, те что обычно рассматриваются в школе и это для линейного движения..

    Дело в том, что есть законы Ньютона и для вращательного движения..

    Всего шесть уравнений..

    Но конечно полной аналогии между ними нет.

    Я уже отвечала на подобный вопрос и в ходе ответа открыла даже для себя много нового. Оказывается три закона Ньютона которые мы изучали на уроках в школе это далеко не все что успел открыть великий англичанин. Ньютон занимался основами дифференциального исчисления, четвертым законом Ньютона считается Закон всемирного тяготения — который пытались осмыслить задолго до него, но сэр Исаак сумел подвести под умозаключения математическую основу. Занимался Ньютон и оптикой, самым нелюбимым школьниками разделом физики и даже открыл явление интерференции — те самые кольца Ньютона. Но есть и еще пятый закон связанный с именем Ньютона — это закон теплопередачи который официально называется закон Ньютона-Рихмана.

    Пять законов и множество постулатов — вот итог творчества великого физика и масона.

    Вообще три закона Ньютона — это собирательное название трех законов, которые лежат в основе классической механики. Благодаря им можно записать уравнения движения для каждой механической системы, при этом должны быть известны силовые взаимодействия для тел, которые её составляют. Эти законы были сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии», написанной в 1687 году. Известен такой интересный факт, что при формулировке закона инерции Исаак Ньютон опирался на труды Галилео Галилея, который первым понял ошибочность утверждения, "тело, на которое ничто не действует, может только покоиться". Закон номер два говорит нам о том, что причиной изменения скорости тела является действие на него окружающих тел. В основе третьего закона Ньютона лежит формулировка: "при взаимодействии двух тел силы, с которыми они действуют друг на друга, равны по модулю и противоположны, по направлению". Таким образом, законы Ньютона, представляя собой основу классической механики, рассматривают взаимодействия макроскопических тел, которые участвуют в нерелятивистских движениях (то есть их скорости намного меньше скорости света). Но, плюс ко всему тела описываются как материальные точки, а вот движение рассматривается относительно инерциальных систем отсчета.

    www.bolshoyvopros.ru

    Зако?ны Нью?то?на - три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силы, действующие на составляющие её тела. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год) .

    Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как Закон инерции . Инерция - это свойство тела сохранять скорость своего движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают разной инертностью. Инертность - это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуется массой тела.

    В современной физике первый закон Ньютона принято формулировать в следующем виде :

    Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

    Ньютон в своей книге «Математические начала натуральной философии» сформулировал первый закон механики в следующем виде:

    Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

    С современной точки зрения, такая формулировка неудовлетворительна. Во-первых, термин «тело» следует заменить термином «материальная точка», так как тело конечных размеров в отсутствие внешних сил может совершать и вращательное движение. Во-вторых, и это главное, Ньютон в своём труде опирался на существование абсолютной неподвижной системы отсчёта, то есть абсолютного пространства и времени, а это представление современная физика отвергает. С другой стороны, в произвольной (например, вращающейся) системе отсчёта закон инерции неверен, поэтому ньютоновская формулировка была заменена постулатом существования инерциальных систем отсчета.

    Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

    Масса материальной точки при этом полагается величиной постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами .

    В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

    При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

    Второй закон Ньютона может быть также сформулирован в эквивалентной форме с использованием понятия импульс:

    В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней внешних сил.

    Когда на материальную точку действуют несколько сил, с учётом принципа суперпозиции, второй закон Ньютона записывается в виде:

    Второй закон Ньютона, как и вся классическая механика, справедлив только для движения тел со скоростями, много меньшими скорости света. При движении тел со скоростями, близкими к скорости света, используется релятивистское обобщение второго закона, получаемое в рамках специальной теории относительности.

    Историческая формулировка

    Исходная формулировка Ньютона:

    Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

    Интересно, что если добавить требование инерциальности для системы отсчёта, то в такой формулировке этот закон справедлив даже в релятивистской механике.

    Современная формулировка

    Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

    Закон утверждает, что силы возникают лишь попарно, причём любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, сила всегда есть результат взаимодействия тел. Существование сил, возникших самостоятельно, без взаимодействующих тел, невозможно .

    Ньютон дал следующую формулировку закона :

    Действию всегда есть равное и противоположное противодействие, иначе - взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны.

    Для силы Лоренца третий закон Ньютона не выполняется. Лишь переформулировав его как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость .

    Закон сохранения импульса

    Закон сохранения импульса утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю .

    Закон сохранения механической энергии

    Далее, если все силы консервативны, то возникает закон сохранения механической энергии взаимодействующих тел: полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.

    Законы Ньютона являются основными законами механики. Из них могут быть выведены уравнения движения механических систем. Однако не все законы механики можно вывести из законов Ньютона. Например, закон всемирного тяготения или закон Гука не являются следствиями трёх законов Ньютона.

    Помимо сил, о которых идёт речь во втором и третьем законах Ньютона, в механике вводят в рассмотрение так называемые силы инерции . Обычно речь идёт о силах инерции двух различных типов . Сила первого типа (Д’Аламберова сила инерции ) представляет собой векторную величину, равную произведению массы материальной точки на её ускорение, взятое со знаком минус. Силы второго типа (Эйлеровы силы инерции ) используются для получения формальной возможности записи уравнений движения тел в неинерциальных системах отсчёта в виде, совпадающем с видом второго закона Ньютона. По определению эйлерова сила инерции равна произведению массы материальной точки на разность между значениями её ускорения в той неинерциальной системе отсчёта, для которой эта сила вводится, с одной стороны, и в какой-либо инерциальной системе отсчёта, с другой .Определяемые таким образом силы инерции силами в смысле законов Ньютона не являются . Данный факт служит основанием для утверждения о том, что они не являются физическими силами ; ту же мысль выражают, называя их фиктивными , кажущимися или псевдосилами .

    Законы Ньютона и Лагранжева механика

    Законы Ньютона - только один из способов формулирования классической механики. В рамках Лагранжевой механики имеется одна-единственная формула (запись действия) и один-единственный постулат (тела движутся так, чтобы действие было стационарным), и из этого можно вывести все законы Ньютона, правда, только для лагранжевых систем (в частности для консервативных систем). Следует, однако, отметить, что все известные фундаментальные взаимодействия описываются именно лагранжевыми системами. Более того, в рамках Лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима.

    Решение уравнений движения

    Уравнение F > = m a > =m> является дифференциальным уравнением: ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию (перемещение) механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости.

    Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

    Пространство и Время Ньютона

    Современная физика отказалась от концепции абсолютного пространства и времени классической физики Ньютона. Релятивистская теория продемонстрировала, что пространство и время относительны. Нет, по-видимому, фраз, повторяемых более часто в работах по истории физики и философии. Однако все не так просто, и подобные утверждения требуют определенных уточнений (правда, достаточно лингвистического толка). Тем не менее, обращения истокам иногда оказывается очень полезным для понимания современного состояния науки.

    Время, как известно, можно измерить при помощи равномерного периодического процесса. Однако, не имея времени, откуда мы знаем, что процессы равномерны ? Очевидны логические трудности в определении подобных первичных понятий. Равномерность хода часов должна постулироваться и называться равномерным течением времени. Например, определяя время при помощи равномерного и прямолинейного движения, мы тем самым превращаем первый закон Ньютона в определение равномерного хода времени. Часы идут равномерно, если тело, на которое не действуют силы, движется прямолинейно и равномерно (по этим часам). При этом движение мыслится относительно инерциальной системы отсчета, которая для своего определения также нуждается в первом законе Ньютона и равномерно идущих часах.

    Другая трудность связана с тем, что два одинаково равномерных на данном уровне точности процесса могут оказаться относительно неравномерными при более точном измерении. И мы постоянно оказываемся перед необходимостью выбора все более надежного эталона равномерности хода времени.

    Как уже отмечалось, процесс считается равномерным и измерение времени с его помощью приемлемым до тех пор, пока все другие явления описываются максимально просто. Очевидно, что требуется определенная степень абстрагирования при подобном определении времени. Постоянный поиск правильных часов связан с нашим убеждением в некотором объективном свойстве времени обладать равномерным темпом хода.

    Ньютон отлично понимал существование подобных трудностей. Более того, в своих «Началах» он и ввел понятия абсолютного и относительного времени, чтобы подчеркнуть необходимость абстрагирования, определения на основе относительного (обыденного, измеряемого) времени его некоторой математической модели — времени абсолютного. И в этом его понимание сущности времени не отличается от современного, хотя из-за различия в терминологии возникла определённая путаница.

    Обратимся к «Математическим Началам Натуральной Философии» (1687 г.). Сокращённые формулировки определения Ньютоном абсолютного и относительного времени звучат следующим образом: Абсолютное (математическое) время без всякого отношения к чему-либо внешнему протекает равномерно. Относительное (обыденное) время есть мера продолжительности, постигаемая чувствами при посредстве какого-либо движения. Соотношение между этими двумя понятиями и необходимость в них ясно видна из следующего пояснения: Абсолютное время различается в астрономии от обыденного солнечного времени уравнением времени. Ибо естественные солнечные сутки, принимаемые при обыденном измерении времени за равные, на самом деле между собою неравны. Это неравенство и исправляется астрономами, чтобы при измерениях движений небесных светил применять более правильное время. Возможно, что не существует (в природе) такого равномерного движения, которым время могло бы измеряться с совершенною точностью. Все движения могут ускоряться или замедляться, течение же абсолютного времени изменяться не может. Относительное время Ньютона есть время измеряемое, тогда как время абсолютное есть его математическая модель со свойствами, выводимыми из относительного времени при помощи абстрагирования. Вообще, говоря о времени, пространстве и движении, Ньютон постоянно подчеркивает, что они постигаются нашими чувствами и тем самым являются обыденными (относительными): Относительные количества не суть те самые количества, коих имена им обычно придаются, а суть лишь результаты измерений сказанных количеств (истинные или ложные), постигаемые чувствами и принимаемые обычно за сами количества. Необходимость построения модели этих понятий требует введения математических (абсолютных) объектов, неких идеальных сущностей, не зависящих от неточности приборов. Утверждение Ньютона от том, что «абсолютное время протекает равномерно без всякого отношения к чему-либо внешнему» обычно истолковывают в смысле независимости времени от движения. Однако, как видно из приведенных выше цитат, Ньютон говорит о необходимости абстрагирования от возможных неточностей равномерного хода любых часов. Для него абсолютное и математическое время являются синонимами!

    Ньютон нигде не обсуждает вопрос о том, что скорость течения времени может отличаться в различных относительных пространствах (системах отсчета). Безусловно, классическая механика подразумевает одинаковую равномерность хода времени для всех систем отсчета. Однако это свойство времени кажется настолько очевидным, что Ньютон, очень точный в своих формулировках, не обсуждает его и не формулирует как одно из определений или законов своей механики. Именно это свойство времени было отброшено теорией относительности. Абсолютное же время в понимании Ньютона по-прежнему присутствует в парадигме современной физики.

    Перейдём теперь к физическому пространству Ньютона. Если понимать под абсолютным пространством существование некоторой выделенной, привилегированной системы отсчета, то излишне напоминать, что в классической механике его нет. Блестящее описание Галилеем невозможности определить абсолютное движение корабля — яркий тому пример. Таким образом, релятивистская теория и не могла отказаться от того, что в классической механики отсутствовало.

    Тем не менее, у Ньютона вопрос о соотношении абсолютного и относительного пространства недостаточно ясен. С одной стороны, и для времени, и для пространства термин «относительный» используется в смысле «измеряемая величина» (постигаемая нашими чувствами), а «абсолютный» — в смысле «её математическая модель»: Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным. Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел, и которое в обыденной жизни принимается за пространство неподвижное. С другой стороны, в тексте присутствуют рассуждения о моряке на корабле, которые можно истолковать и как описание выделенной системы отсчета: Если же и сама Земля движется, то истинное абсолютное движение тела найдется по истинному движению Земли в неподвижном пространстве и по относительным движениям корабля по отношению к Земле и тела по кораблю. Таким образом, вводится понятие абсолютного движения, которое противоречит принципу относительности Галилея. Однако абсолютное пространство и движение вводятся для того, чтобы тут же поставить под сомнение их существование: Однако совершенно невозможно ни видеть, ни как-нибудь иначе различать при помощи наших чувств отдельные части этого пространства одну от другой, и вместо них приходится обращаться к измерениям, доступным чувствам. По положениям и расстояниям предметов от какого-либо тела, принимаемого за неподвижное, определяем места вообще. Невозможно также определить истинный их (тел) покой по относительному их друг другу положению. Возможно, необходимость рассмотрения абсолютного пространства и абсолютного движения в нем связана с анализом соотношения инерциальных и неинерциальных систем отсчета. Обсуждая опыт с вращающимся ведром, которое наполнено водой, Ньютон показывает, что движение вращения является абсолютным в том смысле, что его можно определить, не выходя за рамки системы ведро-вода, по форме вогнутой поверхности воды. В этом отношении его точка зрения также совпадает с современной. Недоразумение, выраженное в фразах, приведенных в начале раздела, возникло из-за заметных отличий в семантике употребления терминов «абсолютное» и «относительное» Ньютоном и современными физиками. Сейчас, говоря об абсолютной сущности, мы подразумеваем, что она описывается одинаковым образом для различных наблюдателей. Относительные вещи могут выглядеть по-разному для различных наблюдателей. Вместо «абсолютное пространство и время» мы сегодня говорим «математическая модель пространства и времени». Поэтому воистину насилуют смысл священного писания те, кто эти слова истолковывают в нем.

    Математическая структура как классической механики, так и релятивистской теории хорошо известна. Свойства, которыми наделяют эти теории пространство и время, однозначно следуют из этой структуры. Туманные же (философские) рассуждения об устаревшей «абсолютности» и революционной «относительности» вряд ли приближают нас к разгадке Главной Тайны.

    Теория относительности по праву носит это название, так как, действительно, продемонстрировала, что многие вещи, кажущиеся абсолютными при малых скоростях, таковыми не являются при больших.

    Законы механики Ньютона

    Законы Ньютона — в зависимости от того, под каким углом на них посмотреть, — представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки — блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.

    Однако Исаак Ньютон взял названные в его честь законы не из воздуха. Они, фактически, стали кульминацией долгого исторического процесса формулирования принципов классической механики. Мыслители и математики — упомянем лишь Галилея (см. Уравнения равноускоренного движения) — веками пытались вывести формулы для описания законов движения материальных тел — и постоянно спотыкались о то, что лично я сам для себя называю непроговоренными условностями, а именно — обе основополагающие идеи о том, на каких принципах зиждется материальный мир, которые настолько устойчиво вошли в сознание людей, что кажутся неоспоримыми. Например, древним философам даже в голову не приходило, что небесные тела могут двигаться по орбитам, отличающимся от круговых; в лучшем случае возникала идея, что планеты и звезды обращаются вокруг Земли по концентрическим (то есть вложенным друг в друга) сферическим орбитам. Почему? Да потому, что еще со времен античных мыслителей Древней Греции никому не приходило в голову, что планеты могут отклоняться от совершенства, воплощением которой и является строгая геометрическая окружность. Нужно было обладать гением Иоганна Кеплера, чтобы честно взглянуть на эту проблему под другим углом, проанализировать данные реальных наблюдений и вывести из них, что в действительности планеты обращаются вокруг Солнца по эллиптическим траекториям (см. Законы Кеплера).

    Первый закон Ньютона

    Учитывая столь серьезный, исторически сложившийся провал, первый закон Ньютона сформулирован безоговорочно революционным образом. Он утверждает, что если какую-либо материальную частицу или тело попросту не трогать, оно будет продолжать прямолинейно двигаться с неизменной скоростью само по себе. Если тело равномерно двигалось по прямой, оно так и будет двигаться по прямой с неизменной скоростью. Если тело покоилось, оно так и будет покоиться, пока к нему не приложат внешних сил. Чтобы просто сдвинуть физическое тело с места, к нему нужно обязательно приложить стороннюю силу. Возьмем самолет: он ни за что не стронется с места, пока не будут запущены двигатели. Казалось бы, наблюдение самоочевидное, однако, стоит нам отвлечься от прямолинейного движения, как оно перестает казаться таковым. При инерционном движении тела по замкнутой циклической траектории его анализ с позиции первого закона Ньютона только и позволяет точно определить его характеристики.

    Представьте себе что-то типа легкоатлетического молота — ядро на конце струны, раскручиваемое вами вокруг вашей головы. Ядро в этом случае движется не по прямой, а по окружности — значит, согласно первому закону Ньютона, его что-то удерживает; это «что-то» — и есть центростремительная сила, которую вы прилагаете к ядру, раскручивая его. Реально вы и сами можете ее ощутить — рукоять легкоатлетического молота ощутимо давит вам на ладони. Если же вы разожмете руку и выпустите молот, он — в отсутствие внешних сил — незамедлительно отправится в путь по прямой. Точнее будет сказать, что так молот поведет себя в идеальных условиях (например, в открытом космосе), поскольку под воздействием силы гравитационного притяжения Земли он будет лететь строго по прямой лишь в тот момент, когда вы его отпустили, а в дальнейшем траектория полета будет всё больше отклоняться в направлении земной поверхности. Если же вы попробуете действительно выпустить молот, выяснится, что отпущенный с круговой орбиты молот отправится в путь строго по прямой, являющейся касательной (перпендикулярной к радиусу окружности, по которой его раскручивали) с линейной скоростью, равной скорости его обращения по «орбите».

    Теперь заменим ядро легкоатлетического молота планетой, молотобойца — Солнцем, а струну — силой гравитационного притяжения: вот вам и ньютоновская модель Солнечной системы.

    Такой анализ происходящего при обращении одного тела вокруг другого по круговой орбите на первый взгляд кажется чем-то само собой разумеющимся, но не стоит забывать, что он вобрал в себя целый ряд умозаключений лучших представителей научной мысли предшествующего поколения (достаточно вспомнить Галилео Галилея). Проблема тут в том, что при движении по стационарной круговой орбите небесное (и любое иное) тело выглядит весьма безмятежно и представляется пребывающим в состоянии устойчивого динамического и кинематического равновесия. Однако, если разобраться, сохраняется только модуль (абсолютная величина) линейной скорости такого тела, в то время как ее направление постоянно меняется под воздействием силы гравитационного притяжения. Это и значит, что небесное тело движется равноускоренно . Кстати, сам Ньютон называл ускорение «изменением движения».

    Первый закон Ньютона играет и еще одну важную роль с точки зрения нашего естествоиспытательского отношения к природе материального мира. Он подсказывает нам, что любое изменение в характере движения тела свидетельствует о присутствии внешних сил, воздействующих на него. Условно говоря, если мы наблюдаем, как железные опилки, например, подпрыгивают и налипают на магнит, или, доставая из сушилки стиральной машины белье, выясняем, что вещи слиплись и присохли одна к другой, мы можем чувствовать себя спокойно и уверенно: эти эффекты стали следствием действия природных сил (в приведенных примерах это силы магнитного и электростатического притяжения соответственно).

    Второй закон Ньютона

    Если первый закон Ньютона помогает нам определить, находится ли тело под воздействием внешних сил, то второй закон описывает, что происходит с физическим телом под их воздействием. Чем больше сумма приложенных к телу внешних сил, гласит этот закон, тем большее ускорение приобретает тело. Это раз. Одновременно, чем массивнее тело, к которому приложена равная сумма внешних сил, тем меньшее ускорение оно приобретает. Это два. Интуитивно эти два факта представляются самоочевидными, а в математическом виде они записываются так:

    где F — сила, m — масса, а — ускорение. Это, наверное, самое полезное и самое широко используемое в прикладных целях из всех физических уравнений. Достаточно знать величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени.

    Именно второй закон Ньютона придает всей классической механике ее особую прелесть — начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда пытливого наблюдателя. Назовите мне пространственные координаты и скорости всех материальных точек во Вселенной, словно говорит нам Ньютон, укажите мне направление и интенсивность всех действующих в ней сил, и я предскажу вам любое ее будущее состояние. И такой взгляд на природу вещей во Вселенной бытовал вплоть до появления квантовой механики.

    Третий закон Ньютона

    За этот закон, скорее всего, Ньютон и снискал себе почет и уважение со стороны не только естествоиспытателей, но и ученых-гуманитариев и попросту широких масс. Его любят цитировать (по делу и без дела), проводя самые широкие параллели с тем, что мы вынуждены наблюдать в нашей обыденной жизни, и притягивают чуть ли не за уши для обоснования самых спорных положений в ходе дискуссий по любым вопросам, начиная с межличностных и заканчивая международными отношениями и глобальной политикой. Ньютон, однако, вкладывал в свой названный впоследствии третьим закон совершенно конкретный физический смысл и едва ли замышлял его в ином качестве, нежели как точное средство описания природы силовых взаимодействий. Закон этот гласит, что если тело А воздействует с некоей силой на тело В, то тело В также воздействует на тело А с равной по величине и противоположной по направлению силой. Иными словами, стоя на полу, вы воздействуете на пол с силой, пропорциональной массе вашего тела. Согласно третьему закону Ньютона пол в это же время воздействует на вас с абсолютно такой же по величине силой, но направленной не вниз, а строго вверх. Этот закон экспериментально проверить нетрудно: вы постоянно чувствуете, как земля давит на ваши подошвы.

    Тут важно понимать и помнить, что речь у Ньютона идет о двух силах совершенно разной природы, причем каждая сила воздействует на «свой» объект. Когда яблоко падает с дерева, это Земля воздействует на яблоко силой своего гравитационного притяжения (вследствие чего яблоко равноускоренно устремляется к поверхности Земли), но при этом и яблоко притягивает к себе Землю с равной силой. А то, что нам кажется, что это именно яблоко падает на Землю, а не наоборот, это уже следствие второго закона Ньютона. Масса яблока по сравнению с массой Земли низка до несопоставимости, поэтому именно его ускорение заметно для глаз наблюдателя. Масса же Земли, по сравнению с массой яблока, огромна, поэтому ее ускорение практически незаметно. (В случае падения яблока центр Земли смещается вверх на расстояние менее радиуса атомного ядра.)

    По совокупности же три закона Ньютона дали физикам инструменты, необходимые для начала комплексного наблюдения всех явлений, происходящих в нашей Вселенной. И, невзирая на все колоссальные подвижки в науке, произошедшие со времен Ньютона, чтобы спроектировать новый автомобиль или отправить космический корабль на Юпитер, вы воспользуетесь все теми же тремя законами Ньютона.

    1. Законы классической механики (законы Ньютона). Границы применения законов Ньютона.

    Класси?ческая меха?ника - вид механики , основанный на законах Ньютона и принципе относительности Галилея .

    Первый закон – Существуют инерциальная система,в которой тело,предоставленное самому себе,сохраняет состояние покоя или прямолинейного равномерного движения до тех пор,пока внешнее воздействие не выведет его из этого состояния.Гелиоцентрическая система-инерциальная система.Вывод-скорость тела остается постоянной, если действия на него других тел скомпенсированы.

    Второй закон Ньютона : В инерциальных системах отсчета произведение массы тела на его ускорение равно векторной сумме сил, действующих на тело.

    где - результирующий вектор сил, действующих на тело; - вектор ускорения тела; m - масса тела.

    Второй закон Ньютона может быть также записан в терминах изменения импульса тела:

    Третий закон Ньютона В инерциальных системах отсчета действие тел друг на друга носит характер взаимодействия: с какой силой 1е тело действует на 2е, с такой же силой, равной по модулю и противоположной по направлению 2е тело действует на 1е. Наличие третьего закона Ньютона обеспечивает выполнение закона сохранения импульса для системы тел.

    Границы применения законов ньютона.

    Классическая механика даёт очень точные результаты в рамках повседневного опыта. Однако её применение ограничено телами, скорости которых много меньше скорости света , а размеры значительно превышают размеры атомов и молекул .

    2. Волновое уравнение для поперечных упругих волн в струне.

    Поперечные волны (волны сдвига, S-волны) - частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);

    3. Скорость поперечных упругих волн в струне.

    Струной называется гибкая натянутая нить, закрепленная в точках своего начала и конца.

    Упру?гие во?лны (звуковые волны) - волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил.

    Набору значений?n длин волн соответствует набор возможных частот fn:

    где V– скорость распространения поперечных волн по струне.

    скорость распространения поперечных волн по струне. ,

    где ? — погонной массы (то есть массы единицы длины) и T — силы натяжения.

    4. Общее решение волнового уравнения.

    В общем случае волновое уравнение записывается в виде, где - оператор Лапласа, - неизвестная функция, - время, - пространственная переменная, - фазовая скорость. (Фазовая скорость - скорость перемещения точки, обладающей постоянной фазой колебательного движения, в пространстве вдоль заданного направления.)

    Легко проверить, что являются решениями волновых уравнений.

    Эти решения описывают электромагнитную волну, у которой вектор направлен вдоль оси y , вектор — вдоль оси z , волна распространяется вдоль оси x , таким образом, векторы, образуют правую тройку.

    Сколько законов механики у ньютона

    Масса — основная динамическая характеристика тела, количественная мера его инертности, т. е. способности тела приобретать определенное ускорение под действием силы. Чем больше масса тела, тем больше его инертность, тем сложнее вывести тело из первоначального состояния, т. е. заставить его двигаться, или, наоборот, остановить его движение.

    Второй закон Ньютона. Введя понятие массы, сформулируем окончательно второй закон Ньютона :

    Ускорение тела прямо пропорционально силе, действующей на него, и обратно пропорционально его массе: .

    Эта формула выражает один из самых фундаментальных законов природы, которому с удивительной точностью подчиняется движение как громадных небесных тел, так и мельчайших песчинок. С помощью этого закона можно рассчитать движение поршня в цилиндре автомобиля и сложнейшие траектории космических кораблей.

    Для решения задач мы обычно пользуемся другой формулировкой второго закона Ньютона.

    Произведение массы тела на ускорение равно сумме действующих на тело сил:

    Заметим, что если на тело не действуют силы или их сумма равна нулю, то относительно инерциальной системы отсчета и, следовательно, . Однако это не означает, что первый закон Ньютона есть следствие второго. Первый закон Ньютона устанавливает существование инерциальных систем отсчета, а именно таких систем, в которых справедлив второй закон Ньютона.

    Измерение массы . Используя второй закон Ньютона, можно определить массу тела, измерив независимо силу и ускорение:

    Если измерить массы m 1 , m 2 , m 3 , . нескольких тел, а затем соединить все эти тела вместе и измерить массу m одного объединенного тела, то будет выполняться простое соотношение: m=m 1 +m 2 +m 3 + . .

    Справедливо и обратное: если разделить тело на части, то сумма масс этих частей будет равна массе тела до разделения.

    Сформулирован основной закон динамики — второй закон Ньютона. Его нужно помнить и понимать смысл всех трех величин, входящих в этот закон.

      Официально у ньютона четыре закона, еще существует один закон неофициальный, его используют на улицах для подколов и насмешек над теми кто не знает. Задается вопрос какой пятый закон ньютона, на который человек не может ответить и тут ему втирают что то непонятное и он соответственно верит. Затем просто всем становиться смешно ведь пятого закона Ньютона не существует.

      Вообще в школе мы изучали три закона Ньютона, но если почитать и углубиться в его деятельность. Можно обнаружить, что в общей сложности у него пять законов и множество постулатов, которые следуют за ними.

      Исаак Ньютон открыл три физических закона. Закон первый - это закон инерции:

      второй: F=ma

      и третий: F1=-F2

      Как видим, у Ньютона физика характеризуется через понятия силы, времени, пространства, массы и материальных точек.

    • Я уже отвечала на подобный вопрос и в ходе ответа открыла даже для себя много нового. Оказывается три закона Ньютона которые мы изучали на уроках в школе это далеко не все что успел открыть великий англичанин. Ньютон занимался основами дифференциального исчисления, четвертым законом Ньютона считается Закон всемирного тяготения - который пытались осмыслить задолго до него, но сэр Исаак сумел подвести под умозаключения математическую основу. Занимался Ньютон и оптикой, самым нелюбимым школьниками разделом физики и даже открыл явление интерференции - те самые кольца Ньютона. Но есть и еще пятый закон связанный с именем Ньютона - это закон теплопередачи который официально называется закон Ньютона-Рихмана.

      Пять законов и множество постулатов - вот итог творчества великого физика и масона.

      По факту всего существует три закона ньютона. Первый закон эта закон инерции(если кратко), второй закон дифференциальный закон движения. Третий закон ньютона объясняет что происходит с телами при взаимодействии

      Есть три закона Ньютона.

      • Первый закон -закон инерции.

      инерция это свойство тела сохранять скорость неизменной.

      А для того чтобы скорость тела изменилась,на тело должна по действовать сила.

      - второй закон-закон движения.

      • третий закон

      Собственно три закона классической механики, основа е называются именем ньютона..

      Затем закон всемирного тяготения..

      Так что в школе изучаются четыре закона Ньютона, просто последний не носит такого названия, хотя его открыватель-Ньютон..

      Все четыре закона выведены из наблюдения за планетами и эмпирических законов Кеплера (основаны на данных астронома Тихо Браге)..

      Так что история о яблоке-всего лишь легенда.

      Кроме того Ньютон работал в оптике и открыл состав белого света (с помощью призм).

      Также он доказал, что всякий цвет можно синтезировать смешение определнных пропорций трх основных цветов (красного, синего, зелного)..

      Он обнаружил оптическое явление, именуемое кольцами Ньютона, основанными на интерференции света.

      Кроме того законов Ньютона (если рассмотреть строго) для механики не три..

      Три - это, те что обычно рассматриваются в школе и это для линейного движения..

      Дело в том, что есть законы Ньютона и для вращательного движения..

      Всего шесть уравнений..

      Но конечно полной аналогии между ними нет.

      Наверное не для кого не секрет, что великий физик Исаак Ньютон открыл и доказал три закона.

      Первый, так называемый закон инерции.

      Второй, дифференциальный закон движения.

      Третий закон описывает, как взаимодействуют две материальные точки.

      Вообще три закона Ньютона - это собирательное название трех законов, которые лежат в основе классической механики. Благодаря им можно записать уравнения движения для каждой механической системы, при этом должны быть известны силовые взаимодействия для тел, которые е составляют. Эти законы были сформулированы Исааком Ньютоном в книге Математические начала натуральной философии, написанной в 1687 году. Известен такой интересный факт, что при формулировке закона инерции Исаак Ньютон опирался на труды Галилео Галилея, который первым понял ошибочность утверждения, тело, на которое ничто не действует, может только покоиться. Закон номер два говорит нам о том, что причиной изменения скорости тела является действие на него окружающих тел. В основе третьего закона Ньютона лежит формулировка: при взаимодействии двух тел силы, с которыми они действуют друг на друга, равны по модулю и противоположны, по направлению. Таким образом, законы Ньютона, представляя собой основу классической механики, рассматривают взаимодействия макроскопических тел, которые участвуют в нерелятивистских движениях (то есть их скорости намного меньше скорости света). Но, плюс ко всему тела описываются как материальные точки, а вот движение рассматривается относительно инерциальных систем отсчета.



    Похожие статьи